Do you want to publish a course? Click here

Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling

131   0   0.0 ( 0 )
 Added by Jorge Puebla
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the most fundamental forms of magnon-phonon interaction is an intrinsic property of magnetic materials, the magnetoelastic coupling. This particular form of interaction has been the basis for describing magnetic materials and their strain related applications, where strain induces changes of internal magnetic fields. Different from the magnetoelastic coupling, more than 40 years ago, it was proposed that surface acoustic waves may induce surface magnons via rotational motion of the lattice in anisotropic magnets. However, a signature of this magnon-phonon coupling mechanism, termed magneto-rotation coupling, has been elusive. Here, we report the first observation and theoretical framework of the magneto-rotation coupling in a perpendicularly anisotropic ultra-thin film Ta/CoFeB(1.6 nm)/MgO, which consequently induces nonreciprocal acoustic wave attenuation with a unprecedented ratio up to 100$%$ rectification at the theoretically predicted optimized condition. Our work not only experimentally demonstrates a fundamentally new path for investigating magnon-phonon coupling, but also justify the feasibility of the magneto-rotation coupling based application.



rate research

Read More

71 - R. Sasaki , Y. Nii , Y. Iguchi 2016
We have investigated surface acoustic wave propagation in Ni/LiNbO$_3$ hybrid devices. We have found the absorption and phase velocity are dependent on the sign of wave vector in a device, which indicates the nonreciprocal propagation characteristic of systems with time reversal and spatial inversion simultaneously broken symmetries. The nonreciprocity is reversed by the 180$^circ$ rotation of magnetic field. Nonreciprocity seems largely dependent on the shape of ferromagnetic Ni film. The origin of these observations is ascribed to film shape dependent magnetoelastic coupling.
A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{rm SAW}simeq800,mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system.
Magnons, namely spin waves, are collective spin excitations in ferromagnets, and their control through coupling with other excitations is a key technology for future hybrid spintronic devices. Although strong coupling has been demonstrated with microwave photonic structures, an alternative approach permitting high density integration and minimized electromagnetic crosstalk is required. Here we report a planar cavity magnomechanical system, where the cavity of surface acoustic waves enhances the spatial and spectral power density to thus implement magnon-phonon coupling at room temperature. Excitation of spin-wave resonance involves significant acoustic power absorption, whereas the collective spin motion reversely exerts a back-action force on the cavity dynamics. The cavity frequency and quality-factor are significantly modified by the back-action effect, and the resultant cooperativity exceeds unity, suggesting coherent interaction between magnons and phonons. The demonstration of a chip-scale magnomechanical system paves the way to the development of novel spin-acoustic technologies for classical and quantum applications.
The observation of micron size spin relaxation makes graphene a promising material for applications in spintronics requiring long distance spin communication. However, spin dependent scatterings at the contact/graphene interfaces affect the spin injection efficiencies and hence prevent the material from achieving its full potential. While this major issue could be eliminated by nondestructive direct optical spin injection schemes, graphenes intrinsically low spin orbit coupling strength and optical absorption place an obstacle in their realization. We overcome this challenge by creating sharp artificial interfaces between graphene and WSe2 monolayers. Application of a circularly polarized light activates the spin polarized charge carriers in the WSe2 layer due to its spin coupled valley selective absorption. These carriers diffuse into the superjacent graphene layer, transport over a 3.5 um distance, and are finally detected electrically using BN/Co contacts in a non local geometry. Polarization dependent measurements confirm the spin origin of the non local signal.
Magnonics attracts increasing attention in the view of novel low-energy computation technologies based on spin waves. Recently, spin-wave propagation in longitudinally magnetized nano-scaled spin-wave conduits was demonstrated, proving the fundamental feasibility of magnonics at the sub-100 nm scale. Transversely magnetized nano-conduits, which are of great interest in this regard as they offer a large group velocity and a potentially chirality-based protected transport of energy, have not yet been investigated due to their complex internal magnetic field distribution. Here, we present a study of propagating spin waves in a transversely magnetized nanoscopic yttrium iron garnet conduit of 50 nm width. Space and time-resolved micro-focused Brillouin-light-scattering spectroscopy is employed to measure the spin-wave group velocity and decay length. A long-range spin-wave propagation is observed with a decay length of up to (8.0+-1.5) {mu}m and a large spin-wave lifetime of up to (44.7+-9.1) ns. The results are supported with micromagnetic simulations, revealing a single-mode dispersion relation in contrast to the common formation of localized edge modes for microscopic systems. Furthermore, a frequency non-reciprocity for counter-propagating spin waves is observed in the simulations and the experiment, caused by the trapezoidal cross-section of the structure. The revealed long-distance spin-wave propagation on the nanoscale is particularly interesting for an application in spin-wave devices, allowing for long-distance transport of information in magnonic circuits, as well as novel low-energy device architectures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا