Do you want to publish a course? Click here

Scaling and higher twist in the nucleon Compton amplitude

227   0   0.0 ( 0 )
 Added by Ross Young
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The partonic structure of hadrons plays an important role in a vast array of high-energy and nuclear physics experiments. It also underpins the theoretical understanding of hadron structure. Recent developments in lattice QCD offer new opportunities for reliably studying partonic structure from first principles. Here we report on the use of the Feynman-Hellmann theorem to study the forward Compton amplitude in the unphysical region. We demonstrate how this amplitude provides direct constraint on hadronic inelastic structure functions. The use of external momentum transfer allows us to study the $Q^2$ evolution to explore the onset of asymptotic scaling and reveal higher-twist effects in partonic structure.



rate research

Read More

Building upon our recent study arXiv:1709.04325, we investigate the feasibility of calculating the pion distribution amplitude from suitably chosen Euclidean correlation functions at large momentum. We demonstrate in this work the advantage of analyzing several correlation functions simultaneously and extracting the pion distribution amplitude from a global fit. This approach also allows us to study higher-twist corrections, which are a major source of systematic error. Our result for the higher-twist parameter $delta^pi_2$ is in good agreement with estimates from QCD sum rules. Another novel element is the use of all-to-all propagators, calculated using stochastic estimators, which enables an additional volume average of the correlation functions, thereby reducing statistical errors.
We determine the $Delta(1232)$ resonance parameters using lattice QCD and the Luscher method. The resonance occurs in elastic pion-nucleon scattering with $J^P=3/2^+$ in the isospin $I = 3/2$, $P$-wave channel. Our calculation is performed with $N_f=2+1$ flavors of clover fermions on a lattice with $Lapprox 2.8$ fm. The pion and nucleon masses are $m_pi =255.4(1.6)$ MeV and $m_N=1073(5)$ MeV, and the strong decay channel $Delta rightarrow pi N$ is found to be above the threshold. To thoroughly map out the energy-dependence of the nucleon-pion scattering amplitude, we compute the spectra in all relevant irreducible representations of the lattice symmetry groups for total momenta up to $vec{P}=frac{2pi}{L}(1,1,1)$, including irreps that mix $S$ and $P$ waves. We perform global fits of the amplitude parameters to up to 21 energy levels, using a Breit-Wigner model for the $P$-wave phase shift and the effective-range expansion for the $S$-wave phase shift. From the location of the pole in the $P$-wave scattering amplitude, we obtain the resonance mass $m_Delta=1378(7)(9)$ MeV and the coupling $g_{Deltatext{-}pi N}=23.8(2.7)(0.9)$.
We present a determination of nucleon-nucleon scattering phase shifts for l >= 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For l > 0, this is the first lattice QCD calculation using the Luscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU(3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to m_pi = m_K ~ 800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V ~ (3.5 fm)^3 and V ~ (4.6 fm)^3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Luscher formalism for two-nucleon systems.
The forward Compton amplitude describes the process of virtual photon scattering from a hadron and provides an essential ingredient for the understanding of hadron structure. As a physical amplitude, the Compton tensor naturally includes all target mass corrections and higher twist effects at a fixed virtuality, $Q^2$. By making use of the second-order Feynman-Hellmann theorem, the nucleon Compton tensor is calculated in lattice QCD at an unphysical quark mass across a range of photon momenta $3 lesssim Q^2 lesssim 7$ GeV$^2$. This allows for the $Q^2$ dependence of the low moments of the nucleon structure functions to be studied in a lattice calculation for the first time. The results demonstrate that a systematic investigation of power corrections and the approach to parton asymptotics is now within reach.
We report the current status of the on-going lattice-QCD calculations of nucleon isovector axial charge, g_A, using the RBC/UKQCD 2+1-flavor dynamical domain-wall fermion ensembles at lattice cutoff of about a^{-1}=1.4 GeV in a spatial volume (L = 4.6 fm)^3. The result from the ensemble with m_pi = 250 MeV pion mass, corresponding to the finite-size scaling parameter m_pi L sim 5.8, agrees well with an earlier result at a^{-1}=1.7 GeV, L = 2.8 fm, and m_pi = 420 MeV, with similar m_pi L. This suggests the systematic error from excited-state contamination is small in both ensembles and about 10-% deficit in g_A we are observing is likely a finite-size effect that scales with m_pi L. We also report the result from the lighter, m_pi = 170 MeV ensemble.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا