Do you want to publish a course? Click here

Free boundary minimal surfaces with connected boundary and arbitrary genus

81   0   0.0 ( 0 )
 Added by Mario B. Schulz
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We employ min-max techniques to show that the unit ball in $mathbb{R}^3$ contains embedded free boundary minimal surfaces with connected boundary and arbitrary genus.



rate research

Read More

In this paper we establish a connection between free boundary minimal surfaces in a ball in $mathbb{R}^3$ and free boundary cones arising in a one-phase problem. We prove that a doubly connected minimal surface with free boundary in a ball is a catenoid.
86 - Alessandro Pigati 2020
We adapt the viscosity method introduced by Rivi`ere to the free boundary case. Namely, given a compact oriented surface $Sigma$, possibly with boundary, a closed ambient Riemannian manifold $(mathcal{M}^m,g)$ and a closed embedded submanifold $mathcal{N}^nsubsetmathcal{M}$, we study the asymptotic behavior of (almost) critical maps $Phi$ for the functional begin{align*} &E_sigma(Phi):=operatorname{area}(Phi)+sigmaoperatorname{length}(Phi|_{partialSigma})+sigma^4int_Sigma|{mathrm {I!I}}^Phi|^4,operatorname{vol}_Phi end{align*} on immersions $Phi:Sigmatomathcal{M}$ with the constraint $Phi(partialSigma)subseteqmathcal{N}$, as $sigmato 0$, assuming an upper bound for the area and a suitable entropy condition. As a consequence, given any collection $mathcal{F}$ of compact subsets of the space of smooth immersions $(Sigma,partialSigma)to(mathcal{M},mathcal{N})$, assuming $mathcal{F}$ to be stable under isotopies of this space we show that the min-max value begin{align*} &beta:=inf_{Ainmathcal{F}}max_{Phiin A}operatorname{area}(Phi) end{align*} is the sum of the areas of finitely many branched minimal immersions $Phi_{(i)}:Sigma_{(i)}tomathcal{M}$ with $partial_ uPhi_{(i)}perp Tmathcal{N}$ along $partialSigma_{(i)}$, whose (connected) domains $Sigma_{(i)}$ can be different from $Sigma$ but cannot have a more complicated topology. We adopt a point of view which exploits extensively the diffeomorphism invariance of $E_sigma$ and, along the way, we simplify several arguments from the original work. Some parts generalize to closed higher-dimensional domains, for which we get a rectifiable stationary varifold in the limit.
88 - Yong Luo , Linlin Sun 2020
In this note, we study minimal Lagrangian surfaces in $mathbb{B}^4$ with Legendrian capillary boundary on $mathbb{S}^3$. On the one hand, we prove that any minimal Lagrangian surface in $mathbb{B}^4$ with Legendrian free boundary on $mathbb{S}^3$ must be an equatorial plane disk. One the other hand, we show that any annulus type minimal Lagrangian surface in $mathbb{B}^4$ with Legendrian capillary boundary on $mathbb{S}^3$ must be congruent to one of the Lagrangian catenoids. These results confirm the conjecture proposed by Li, Wang and Weng (Sci. China Math., 2020).
Given a $C^k$-smooth closed embedded manifold $mathcal Nsubset{mathbb R}^m$, with $kge 2$, and a compact connected smooth Riemannian surface $(S,g)$ with $partial S eqemptyset$, we consider $frac 12$-harmonic maps $uin H^{1/2}(partial S,mathcal N)$. These maps are critical points of the nonlocal energy begin{equation}E(f;g):=int_Sbig| ablawidetilde ubig|^2,dtext{vol}_g,end{equation} where $widetilde u$ is the harmonic extension of $u$ in $S$. We express the energy as a sum of the $frac 12$-energies at each boundary component of $partial S$ (suitably identified with the circle $mathcal S^1$), plus a quadratic term which is continuous in the $H^s(mathcal S^1)$ topology, for any $sinmathbb R$. We show the $C^{k-1,delta}$ regularity of $frac 12$-harmonic maps. We also establish a connection between free boundary minimal surfaces and critical points of $E$ with respect to variations of the pair $(f,g)$, in terms of the Teichmuller space of $S$.
In this paper, we consider compact free boundary constant mean curvature surfaces immersed in a mean convex body of the Euclidean space or in the unit sphere. We prove that the Morse index is bounded from below by a linear function of the genus and number of boundary components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا