No Arabic abstract
The least squares method with deep neural networks as function parametrization has been applied to solve certain high-dimensional partial differential equations (PDEs) successfully; however, its convergence is slow and might not be guaranteed even within a simple class of PDEs. To improve the convergence of the network-based least squares model, we introduce a novel self-paced learning framework, SelectNet, which quantifies the difficulty of training samples, treats samples equally in the early stage of training, and slowly explores more challenging samples, e.g., samples with larger residual errors, mimicking the human cognitive process for more efficient learning. In particular, a selection network and the PDE solution network are trained simultaneously; the selection network adaptively weighting the training samples of the solution network achieving the goal of self-paced learning. Numerical examples indicate that the proposed SelectNet model outperforms existing models on the convergence speed and the convergence robustness, especially for low-regularity solutions.
Solving general high-dimensional partial differential equations (PDE) is a long-standing challenge in numerical mathematics. In this paper, we propose a novel approach to solve high-dimensional linear and nonlinear PDEs defined on arbitrary domains by leveraging their weak formulations. We convert the problem of finding the weak solution of PDEs into an operator norm minimization problem induced from the weak formulation. The weak solution and the test function in the weak formulation are then parameterized as the primal and adversarial networks respectively, which are alternately updated to approximate the optimal network parameter setting. Our approach, termed as the weak adversarial network (WAN), is fast, stable, and completely mesh-free, which is particularly suitable for high-dimensional PDEs defined on irregular domains where the classical numerical methods based on finite differences and finite elements suffer the issues of slow computation, instability and the curse of dimensionality. We apply our method to a variety of test problems with high-dimensional PDEs to demonstrate its promising performance.
At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high order derivatives lack robustness for training purposes. We propose a novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variables to rewrite the PDEs into a system of low order differential equations as what is done in the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neural network. By taking the residual of the system as a loss function, we can optimize the network parameters to approximate the solution. The whole process relies on low order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularly well-suited for high-dimensional PDEs with high order derivatives.
In this paper, we propose third-order semi-discretized schemes in space based on the tempered weighted and shifted Grunwald difference (tempered-WSGD) operators for the tempered fractional diffusion equation. We also show stability and convergence analysis for the fully discrete scheme based a Crank--Nicolson scheme in time. A third-order scheme for the tempered Black--Scholes equation is also proposed and tested numerically. Some numerical experiments are carried out to confirm accuracy and effectiveness of these proposed methods.
We consider the construction of semi-implicit linear multistep methods which can be applied to time dependent PDEs where the separation of scales in additive form, typically used in implicit-explicit (IMEX) methods, is not possible. As shown in Boscarino, Filbet and Russo (2016) for Runge-Kutta methods, these semi-implicit techniques give a great flexibility, and allows, in many cases, the construction of simple linearly implicit schemes with no need of iterative solvers. In this work we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype linear advection-diffusion equation and in the setting of strong stability preserving (SSP) methods. Our findings are demonstrated on several examples, including nonlinear reaction-diffusion and convection-diffusion problems.
High-dimensional partial differential equations (PDE) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment (CVA) models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonlinear due to the need to incorporate certain nonlinear phenomena in the model such as default risks, transaction costs, volatility uncertainty (Knightian uncertainty), or trading constraints in the model. Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the computational effort for standard approximation methods grows exponentially with the dimension. In this work we propose a new method for solving high-dimensional fully nonlinear second-order PDEs. Our method can in particular be used to sample from high-dimensional nonlinear expectations. The method is based on (i) a connection between fully nonlinear second-order PDEs and second-order backward stochastic differential equations (2BSDEs), (ii) a merged formulation of the PDE and the 2BSDE problem, (iii) a temporal forward discretization of the 2BSDE and a spatial approximation via deep neural nets, and (iv) a stochastic gradient descent-type optimization procedure. Numerical results obtained using ${rm T{small ENSOR}F{small LOW}}$ in ${rm P{small YTHON}}$ illustrate the efficiency and the accuracy of the method in the cases of a $100$-dimensional Black-Scholes-Barenblatt equation, a $100$-dimensional Hamilton-Jacobi-Bellman equation, and a nonlinear expectation of a $ 100 $-dimensional $ G $-Brownian motion.