Do you want to publish a course? Click here

Weak Adversarial Networks for High-dimensional Partial Differential Equations

129   0   0.0 ( 0 )
 Added by Yaohua Zang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Solving general high-dimensional partial differential equations (PDE) is a long-standing challenge in numerical mathematics. In this paper, we propose a novel approach to solve high-dimensional linear and nonlinear PDEs defined on arbitrary domains by leveraging their weak formulations. We convert the problem of finding the weak solution of PDEs into an operator norm minimization problem induced from the weak formulation. The weak solution and the test function in the weak formulation are then parameterized as the primal and adversarial networks respectively, which are alternately updated to approximate the optimal network parameter setting. Our approach, termed as the weak adversarial network (WAN), is fast, stable, and completely mesh-free, which is particularly suitable for high-dimensional PDEs defined on irregular domains where the classical numerical methods based on finite differences and finite elements suffer the issues of slow computation, instability and the curse of dimensionality. We apply our method to a variety of test problems with high-dimensional PDEs to demonstrate its promising performance.



rate research

Read More

222 - Yiqi Gu , Haizhao Yang , Chao Zhou 2020
The least squares method with deep neural networks as function parametrization has been applied to solve certain high-dimensional partial differential equations (PDEs) successfully; however, its convergence is slow and might not be guaranteed even within a simple class of PDEs. To improve the convergence of the network-based least squares model, we introduce a novel self-paced learning framework, SelectNet, which quantifies the difficulty of training samples, treats samples equally in the early stage of training, and slowly explores more challenging samples, e.g., samples with larger residual errors, mimicking the human cognitive process for more efficient learning. In particular, a selection network and the PDE solution network are trained simultaneously; the selection network adaptively weighting the training samples of the solution network achieving the goal of self-paced learning. Numerical examples indicate that the proposed SelectNet model outperforms existing models on the convergence speed and the convergence robustness, especially for low-regularity solutions.
Sparse Identification of Nonlinear Dynamics (SINDy) is a method of system discovery that has been shown to successfully recover governing dynamical systems from data (Brunton et al., PNAS, 16; Rudy et al., Sci. Adv. 17). Recently, several groups have independently discovered that the weak formulation provides orders of magnitude better robustness to noise. Here we extend our Weak SINDy (WSINDy) framework introduced in (arXiv:2005.04339) to the setting of partial differential equations (PDEs). The elimination of pointwise derivative approximations via the weak form enables effective machine-precision recovery of model coefficients from noise-free data (i.e. below the tolerance of the simulation scheme) as well as robust identification of PDEs in the large noise regime (with signal-to-noise ratio approaching one in many well-known cases). This is accomplished by discretizing a convolutional weak form of the PDE and exploiting separability of test functions for efficient model identification using the Fast Fourier Transform. The resulting WSINDy algorithm for PDEs has a worst-case computational complexity of $mathcal{O}(N^{D+1}log(N))$ for datasets with $N$ points in each of $D+1$ dimensions (i.e. $mathcal{O}(log(N))$ operations per datapoint). Furthermore, our Fourier-based implementation reveals a connection between robustness to noise and the spectra of test functions, which we utilize in an textit{a priori} selection algorithm for test functions. Finally, we introduce a learning algorithm for the threshold in sequential-thresholding least-squares (STLS) that enables model identification from large libraries, and we utilize scale-invariance at the continuum level to identify PDEs from poorly-scaled datasets. We demonstrate WSINDys robustness, speed and accuracy on several challenging PDEs.
In this paper, we propose third-order semi-discretized schemes in space based on the tempered weighted and shifted Grunwald difference (tempered-WSGD) operators for the tempered fractional diffusion equation. We also show stability and convergence analysis for the fully discrete scheme based a Crank--Nicolson scheme in time. A third-order scheme for the tempered Black--Scholes equation is also proposed and tested numerically. Some numerical experiments are carried out to confirm accuracy and effectiveness of these proposed methods.
Motivated by recent research on Physics-Informed Neural Networks (PINNs), we make the first attempt to introduce the PINNs for numerical simulation of the elliptic Partial Differential Equations (PDEs) on 3D manifolds. PINNs are one of the deep learning-based techniques. Based on the data and physical models, PINNs introduce the standard feedforward neural networks (NNs) to approximate the solutions to the PDE systems. By using automatic differentiation, the PDEs system could be explicitly encoded into NNs and consequently, the sum of mean squared residuals from PDEs could be minimized with respect to the NN parameters. In this study, the residual in the loss function could be constructed validly by using the automatic differentiation because of the relationship between the surface differential operators $ abla_S/Delta_S$ and the standard Euclidean differential operators $ abla/Delta$. We first consider the unit sphere as surface to investigate the numerical accuracy and convergence of the PINNs with different training example sizes and the depth of the NNs. Another examples are provided with different complex manifolds to verify the robustness of the PINNs.
We consider the construction of semi-implicit linear multistep methods which can be applied to time dependent PDEs where the separation of scales in additive form, typically used in implicit-explicit (IMEX) methods, is not possible. As shown in Boscarino, Filbet and Russo (2016) for Runge-Kutta methods, these semi-implicit techniques give a great flexibility, and allows, in many cases, the construction of simple linearly implicit schemes with no need of iterative solvers. In this work we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype linear advection-diffusion equation and in the setting of strong stability preserving (SSP) methods. Our findings are demonstrated on several examples, including nonlinear reaction-diffusion and convection-diffusion problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا