Do you want to publish a course? Click here

Interplay among Work Function, electronic structure and stoichiometry in nanostructured vanadium oxides films

62   0   0.0 ( 0 )
 Added by Alessandro D'Elia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the interface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxides films by a room temperature Supersonic Cluster Beam Deposition method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an investigation of the electronic structure of several vanadium oxides films as a function of the oxygen content via in-situ Auger, valence-band photoemission spectroscopy and work function measurements. The experiments probed the partial 3d density of states, highlighting the presence of strong V3d-O2p and V3d-V4s hybridization which influence 3d occupation. We show how controlling the stoichiometry of the sample implies a control over work function, and that the access to nanoscale quantum confinement can be exploited to increase the work function of the sample relative to the bulk analogue. In general, the knowledge of the interplay among work function, electronic structure, and stoichiometry is strategic to match nanostructured oxides to their target applications.



rate research

Read More

68 - A. Delia , S.J. Rezvani , N. Zema 2020
We present and discuss an original method to synthesize disordered Nanostructured (NS) VO$_x$ films with controlled stoichiometry and tunable electronic structures. In these NS films, the original lattice symmetry of the bulk vanadium oxides is broken and atoms are arranged in a highly disordered structure . The stoichiometry-dependent disorder as a function of the oxygen concentration has been characterized by in-situ X-ray Absorption Near-Edge Structure (XANES) spectroscopy identifying the spectroscopic fingerprints. Results show structural rearrangements that deviate from the octahedral symmetry with different coexisting disordered phases. The modulation of the electronic structure of the NS films based on the resulted stoichiometry and the quantum confinement in the NS particles are also discussed. We demonstrate the possibility to modulate the electronic structure of VO$_x$ NS films accessing new disordered atomic configurations with a controlled stoichiometry that provides an extraordinary opportunity to match a wide number of technological applications.
Tuning the work functions of materials is of practical interest for maximizing the performance of microelectronic and (photo)electrochemical devices, as the efficiency of these systems depends on the ability to control electronic levels at surfaces and across interfaces. Perovskites are promising compounds to achieve such control. In this work, we examine the work functions of more than 1,000 perovskite oxide surfaces (ABO$_3$) by data-driven (machine-learning) analysis and identify the factors that determine their magnitude. While the work functions of BO$_2$-terminated surfaces are sensitive to the energy of the hybridized oxygen p bands, the work functions of AO-terminated surfaces exhibit a much less trivial dependence with respect to the filling of the d bands of the B-site atom and of its electronic affinity. This study shows the utility of interpretable data-driven models in analyzing the work functions of cubic perovskites from a limited number of electronic-structure descriptors.
We have performed a systematic study of the electronic structures of BiMeO3 (Me = Sc, Cr, Mn, Fe, Co, Ni) series by soft X-ray emission (XES) and absorption (XAS) spectroscopy. The band gap values were estimated for all compounds in the series. For BiFeO3 a band gap of ~0.9 eV was obtained from the alignment of the O Ka XES and O 1s XAS. The O 1s XAS spectrum of BiNiO3 indicates that the formation of holes is due to a Ni2+ valency rather than a Ni3+ valency. We have found that the O Ka XES and O 1s XAS of BiMeO3 probing partially occupied and vacant O 2p states, respectively, are in agreement with the O 2p densities of states obtained from spin-polarized band structure calculations. The O Ka XES spectra show the same degree of Bi 6s--O 2p hybridization for all compounds in the series. We argue herein that the stereochemical activity of Bi 6s lone pairs must be supplemented with inversion symmetry breaking to allow electric polarization. For BiMnO3 and BiFeO3, two cases of multiferroic materials in this series, the former breaks the inversion symmetry due to the antiferromagnetic order induced by particular orbital ordering in the highly distorted perovskite structure and the latter has rhombohedral crystal structure without inversion symmetry.
ABO3 oxides with the perovskite-related structures are attracting significant interest due to their promising physical and chemical properties for many applications requiring tunable chemistry, including fuel cells, catalysis, and electrochemical water splitting. Here we report on the crystal structure of the entire family of perovskite oxides with ABO3 stoichiometry, where A and B are Ba, Sr, Mn, Ce. Given the vast size of this chemically complex material system, exploration for stable perovskite-related structures with respect to its constituent elements and annealing temperature is performed by combinatorial pulsed laser deposition and spatially-resolved characterization of composition and structure. As a result of this high-throughput experimental study, we identify hexagonal perovskite-related polytypic transformation as a function of composition in the Ba1-xSrxMnO3 oxides after annealing at different temperatures. Furthermore, a hexagonal perovskite-related polytype is observed in a narrow composition-temperature range of the BaCexMn1-xO3 oxides. In contrast, a tetragonally-distorted perovskite is observed across a wider range of compositions and annealing temperatures in the Sr1-xCexMnO3 oxides. This structure stability is further enhanced along the BaCexMn1-xO3 - Sr1-xCexMnO3 pseudo-binary tie-line at x=0.25 by increasing Ba-incorporation and annealing temperature. These results indicate that the BaCexMn1-xO3 - Sr1-xCexMnO3 pseudo-binary oxide alloys (solid solutions) with tetragonal perovskite structure and broad composition-temperature range of stability are promising candidates for thermochemical water splitting applications.
We discuss the application of the Agapito Curtarolo and Buongiorno Nardelli (ACBN0) pseudo-hybrid Hubbard density functional to several transition metal oxides. ACBN0 is a fast, accurate and parameter-free alternative to traditional DFT+$U$ and hybrid exact exchange methods. In ACBN0, the Hubbard energy of DFT+$U$ is calculated via the direct evaluation of the local Coulomb and exchange integrals in which the screening of the bare Coulomb potential is accounted for by a renormalization of the density matrix. We demonstrate the success of the ACBN0 approach for the electronic properties of a series technologically relevant mono-oxides (MnO, CoO, NiO, FeO, both at equilibrium and under pressure). We also present results on two mixed valence compounds, Co$_3$O$_4$ and Mn$_3$O$_4$. Our results, obtained at the computational cost of a standard LDA/PBE calculation, are in excellent agreement with hybrid functionals, the GW approximation and experimental measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا