No Arabic abstract
A spectral convex set is a collection of symmetric matrices whose range of eigenvalues form a symmetric convex set. Spectral convex sets generalize the Schur-Horn orbitopes studied by Sanyal-Sottile-Sturmfels (2011). We study this class of convex bodies, which is closed under intersections, polarity, and Minkowski sums. We describe orbits of faces and give a formula for their Steiner polynomials. We then focus on spectral polyhedra. We prove that spectral polyhedra are spectrahedra and give small representations as spectrahedral shadows. We close with observations and questions regarding hyperbolicity cones, polar convex bodies, and spectral zonotopes.
Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrovs Gluing Theorem. In particular, a digon-tailoring cuts off from P a digon containing v, a subset of P bounded by two equal-length geodesic segments that share endpoints, and can then zip closed. In the first part of this monograph, we primarily study properties of the tailoring operation on convex polyhedra. We show that P can be reshaped to any polyhedral convex surface Q a subset of conv(P) by a sequence of tailorings. This investigation uncovered previously unexplored topics, including a notion of unfolding of Q onto P--cutting up Q into pieces pasted non-overlapping onto P. In the second part of this monograph, we study vertex-merging processes on convex polyhedra (each vertex-merge being in a sense the reverse of a digon-tailoring), creating embeddings of P into enlarged surfaces. We aim to produce non-overlapping polyhedral and planar unfoldings, which led us to develop an apparently new theory of convex sets, and of minimal length enclosing polygons, on convex polyhedra. All our theorem proofs are constructive, implying polynomial-time algorithms.
Given any two convex polyhedra P and Q, we prove as one of our main results that the surface of P can be reshaped to a homothet of Q by a finite sequence of tailoring steps. Each tailoring excises a digon surrounding a single vertex and sutures the digon closed. One phrasing of this result is that, if Q can be sculpted from P by a series of slices with planes, then Q can be tailored from P. And there is a sense in which tailoring is finer than sculpting in that P may be tailored to polyhedra that are not achievable by sculpting P. It is an easy corollary that, if S is the surface of any convex body, then any convex polyhedron P may be tailored to approximate a homothet of S as closely as desired. So P can be whittled to e.g., a sphere S. Another main result achieves the same reshaping, but by excising more complicated shapes we call crests, still each enclosing one vertex. Reversing either digon-tailoring or crest-tailoring leads to proofs that any Q inside P can be enlarged to P by cutting Q and inserting and sealing surface patches. One surprising corollary of these results is that, for Q a subset of P, we can cut-up Q into pieces and paste them non-overlapping onto an isometric subset of P. This can be viewed as a form of unfolding Q onto P. All our proofs are constructive, and lead to polynomial-time algorithms.
Let P and Q be convex polyhedra in E3 with face lattices F(P) and F(Q) and symmetry groups G(P) and G(Q), respectively. Then, P and Q are called face equivalent if there is a lattice isomorphism between F(P) and F(Q); P and Q are called symmetry equivalent if the action of G(P) on F(P) is equivalent to the action of G(Q) on F(Q). It is well known that the set [P] of all polyhedra which are face equivalent to P has the structure of a manifold of dimension {e-1}, up to similarities, where e=e(P) is the number of edges of P. This is a consequence of the Steinitzs classical Theorem. We give a new proof of this fact. The symmetry type of P denoted by <P> is the set of all polyhedron Q symmetry equivalent to P. We show that for polyhedra with symmetry group G(P) a reflection group the dimension of this manifold is {O-1} where O is the number of edge orbits of P under and the action of G(P) on F(P).
The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the natural candidates to be the maximizing polyhedra, which are the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed. When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gales evenness criterion.
In 1992, Kalai and Kleitman proved a quasipolynomial upper bound on the diameters of convex polyhedra. Todd and Sukegawa-Kitahara proved tail-quasipolynomial bounds on the diameters of polyhedra. These tail bounds apply when the number of facets is greater than a certain function of the dimension. We prove tail-quasipolynomial bounds on the diameters of polytopes and normal simplicial complexes. We also prove tail-polynomial upper bounds on the diameters of polyhedra.