Do you want to publish a course? Click here

Gate-tunable spin waves in antiferromagnetic atomic bilayers

124   0   0.0 ( 0 )
 Added by Xiao-Xiao Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The emergence of two-dimensional (2D) layered magnetic materials has opened an exciting playground for both fundamental studies of magnetism in 2D and explorations of spinbased applications. Remarkable properties, including spin filtering in magnetic tunnel junctions and gate control of magnetic states, have recently been demonstrated in 2D magnetic materials. While these studies focus on the static properties, dynamic magnetic properties such as excitation and control of spin waves have remained elusive. Here we excite spin waves and probe their dynamics in antiferromagnetic CrI3 bilayers by employing an ultrafast optical pump/magneto-optical Kerr probe technique. We identify sub-terahertz magnetic resonances under an in-plane magnetic field, from which we determine the anisotropy and interlayer exchange fields and the spin damping rates. We further show tuning of antiferromagnetic resonances by tens of gigahertz through electrostatic gating. Our results shed light on magnetic excitations and spin dynamics in 2D magnetic materials, and demonstrate their unique potential for applications in ultrafast data storage and processing.



rate research

Read More

Optically induced spin currents have proven to be useful in spintronics applications, allowing for sub-ps all-optical control of magnetization. However, the mechanism responsible for their generation is still heavily debated. Here we use the excitation of spin-current induced THz spin-waves in noncollinear bilayer structures to directly study optical spin-currents in the time domain. We measure a significant laser-fluence dependence of the spin-wave phase, which can quantitatively be explained assuming the spin current is proportional to the time derivative of the magnetization. Measurements of the absolute spin-wave phase, supported by theoretical calculations and micromagnetic simulations, suggest that a simple ballistic transport picture is sufficient to properly explain spin transport in our experiments and that the damping-like optical STT dominates THz spin-wave generation. Our findings suggest laser-induced demagnetization and spin-current generation share the same microscopic origin.
Propagation of backward magnetostatic surface spin waves (SWs) in exchange coupled Co/FeNi bilayers are studied by using Brillouin light scattering (BLS) technique. Two types of SWs modes were identified in our BLS measurements. They are magnetostatic surface waves (MSSWs) mode and perpendicular standing spin waves (PSSWs) mode. The dispersion relations of MSSWs obtained from the Stokes and Anti-Stokes measurements display respectively positive and negative group velocities. The Anti-Stokes branch with positive phase velocities and negative group velocities, known as backward magnetostatic surface mode originates from the magnetostatic interaction of the bilayer. The experimental data are in good agreement with the theoretical calculations. Our results are useful for understanding the SWs propagation and miniaturizing SWs storage devices.
Spin-orbit coupling in graphene can be increased far beyond its intrinsic value by proximity coupling to a transition metal dichalcogenide. In bilayer graphene, this effect was predicted to depend on the occupancy of both graphene layers, rendering it gate-tunable by an out-of-plane electric field. We experimentally confirm this prediction by studying magnetotransport in a dual-gated WSe$_2$/bilayer graphene heterostructure. Weak antilocalization, which is characteristic for phase-coherent transport in diffusive samples with spin-orbit interaction, can be strongly enhanced or suppressed at constant carrier density, depending on the polarity of the electric field. From the spin-orbit scattering times extracted from the fits, we calculate the corresponding Rashba and intrinsic spin-orbit parameters. They show a strong dependence on the transverse electric field, which is well described by a gate-dependent layer polarization of bilayer graphene.
We report an efficient technique to induce gate-tunable two-dimensional superlattices in graphene by the combined action of a back gate and a few-layer graphene patterned bottom gate complementary to existing methods. The patterned gates in our approach can be easily fabricated and implemented in van der Waals stacking procedures allowing flexible use of superlattices with arbitrary geometry. In transport measurements on a superlattice with lattice constant $a=40$ nm well pronounced satellite Dirac points and signatures of the Hofstadter butterfly including a non-monotonic quantum Hall response are observed. Furthermore, the experimental results are accurately reproduced in transport simulations and show good agreement with features in the calculated band structure. Overall, we present a comprehensive picture of graphene-based superlattices, featuring a broad range of miniband effects, both in experiment and in theoretical modeling. The presented technique is suitable for studying more advanced geometries which are not accessible by other methods.
Graphene has remarkable opportunities for spintronics due to its high mobility and long spin diffusion length, especially when encapsulated in hexagonal boron nitride (h-BN). Here, for the first time, we demonstrate gate-tunable spin transport in such encapsulated graphene-based spin valves with one-dimensional (1D) ferromagnetic edge contacts. An electrostatic backgate tunes the Fermi level of graphene to probe different energy levels of the spin-polarized density of states (DOS) of the 1D ferromagnetic contact, which interact through a magnetic proximity effect (MPE) that induces ferromagnetism in graphene. In contrast to conventional spin valves, where switching between high- and low-resistance configuration requires magnetization reversal by an applied magnetic field or a high-density spin-polarized current, we provide an alternative path with the gate-controlled spin inversion in graphene. The resulting tunable MPE employing a simple ferromagnetic metal holds promise for spintronic devices and to realize exotic topological states, from quantum spin Hall and quantum anomalous Hall effects, to Majorana fermions and skyrmions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا