Propagation of backward magnetostatic surface spin waves (SWs) in exchange coupled Co/FeNi bilayers are studied by using Brillouin light scattering (BLS) technique. Two types of SWs modes were identified in our BLS measurements. They are magnetostatic surface waves (MSSWs) mode and perpendicular standing spin waves (PSSWs) mode. The dispersion relations of MSSWs obtained from the Stokes and Anti-Stokes measurements display respectively positive and negative group velocities. The Anti-Stokes branch with positive phase velocities and negative group velocities, known as backward magnetostatic surface mode originates from the magnetostatic interaction of the bilayer. The experimental data are in good agreement with the theoretical calculations. Our results are useful for understanding the SWs propagation and miniaturizing SWs storage devices.
The existence of backscattering-immune spin-wave modes is demonstrated in magnetic thin films of nano-scale thickness. Our results reveal that chiral Magneto Static Surface Waves (cMSSWs), which propagate perpendicular to the magnetization direction in an in-plane magnetized thin film, are robust against backscattering from surface defects. cMSSWs are protected against various types of surface inhomogeneities and defects as long as their frequency lies inside the gap of the volume modes. Our explanation is independent of the topology of the modes and predicts that this robustness is a consequence of symmetry breaking of the dynamic magnetic fields of cMSSWs due to the off-diagonal part of the dipolar interaction tensor, which is present both for long- (dipole dominated) and short-wavelength (exchange dominated) spin waves. Micromagnetic simulations confirm the robust character of the cMSSWs. Our results open a new direction in designing highly efficient magnonic logic elements and devices employing cMSSWs in nano-scale thin films.
We investigate yttrium iron garnet (YIG)/cobalt (Co) heterostructures using broadband ferromagnetic resonance (FMR). We observe an efficient excitation of perpendicular standing spin waves (PSSWs) in the YIG layer when the resonance frequencies of the YIG PSSWs and the Co FMR line coincide. Avoided crossings of YIG PSSWs and the Co FMR line are found and modeled using mutual spin pumping and exchange torques. The excitation of PSSWs is suppressed by a thin aluminum oxide (AlOx) interlayer but persists with a copper (Cu) interlayer, in agreement with the proposed model.
We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a class of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding numbers around these vortex lines and identify them to be the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence appropriately reformulated for these classical waves, we predict that surface modes appear but not in a gap of the bulk frequency spectrum. This feature, consistent with the magnetostatic surface spin waves, indicates a broader realm of topological phases of matter beyond spectrally gapped ones.
The dipolar (magnetostatic) interaction dominates the behavior of spin waves in magnetic films in the long-wavelength regime. In an in-plane magnetized film, volume modes exist with a negative group velocity (backward volume magnetostatic spin waves), in addition to the forward surface-localized mode (Damon-Eshbach). Inside the film of finite thickness $L$, the volume modes have a nontrivial spatial dependence, and their two-dimensional dispersion relations $omega(mathbf{k})$ can be calculated only numerically. We present explicit perturbative expressions for the profiles and frequencies of the volume modes, taking into account an in-plane applied field and uniaxial anisotropy, for the regimes $lVert mathbf{k}L rVert gg 1$ and $lVert mathbf{k}L rVert ll 1$, which together provide a good indication of the behavior of the modes for arbitrary wavevector $mathbf{k}$. Moreover, we derive a very accurate semianalytical expression for the dispersion relation $omega(mathbf{k})$ of the lowest-frequency mode that is straightforward to evaluate using standard numerical routines. Our results are useful to quickly interpret and control the excitation and propagation of spin waves in (opto-)magnetic experiments.
We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers with thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer its origin is associated with a particular property of Co.
Wenjie Song
,Xiansi Wang
,Wenfeng Wang Changjun Jiang
.
(2020)
.
"Backward magnetostatic surface spin waves in exchange coupled Co/FeNi bilayers"
.
Wenjie Song
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا