Do you want to publish a course? Click here

Quadratic soliton mode-locked degenerate optical parametric oscillator

138   0   0.0 ( 0 )
 Added by Mingming Nie
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

By identifying the similarities between the coupled-wave equations and the parametrically driven nonlinear Schrodinger equation, we unveil the existence condition of the quadratic soliton mode-locked degenerate optical parametric oscillator in the previously unexplored parameter space of near-zero group velocity mismatch. We study the nature of the quadratic solitons and divide their dynamics into two distinctive branches depending on the system parameters. We find the nonlinear interaction between the resonant pump and signal results in phenomena that resemble the dispersive two-photon absorption and the dispersive Kerr effect. Origin of the quadratic soliton perturbation is identified and strategy to mitigate its detrimental effect is developed. Terahertz comb bandwidth and femtosecond pulse duration are attainable in an example periodically poled lithium niobate waveguide resonator in the short-wave infrared and an example orientation-patterned gallium arsenide free-space cavity in the long-wave infrared. The quadratic soliton mode-locking principle can be extended to other material platforms, making it a competitive ultrashort pulse and broadband comb source architecture at the mid-infrared.



rate research

Read More

In this letter, we investigate a Yb-doped mode-locked fiber oscillator that uses coherent pulse division and recombination to avoid excessive nonlinear phase shifts. The mode-locking mechanism of the laser is based on the accumulation of a differential nonlinear phase between orthogonal polarization modes in the polarization-maintaining fiber segment. The inserted coherent pulse divider, based on YVO4-crystals rotated successively by 45{deg}, enables stable and undistorted mode-locked steady-states. The output pulse energy is increased from 89 pJ in the non-divided operation by ~6.5 dB to more than 400 pJ with three divisions. Measurements of the amplitude-fluctuations reveal a simultaneous broadband reduction of up to ~9 dB in the frequency range from 10 kHz to 2MHz.
286 - Gaelle Keller 2008
We report the first experimental observation of bright EPR beams produced by a type-II optical parametric oscillator operating above threshold at frequency degeneracy. The degenerate operation is obtained by introducing a birefringent plate inside the cavity resulting in phase locking. After filtering the pump noise, which plays a critical role, continuous-variable EPR correlations between the orthogonally polarized signal and idler beams are demonstrated.
Cross phase modulation (XPM) could induce soliton trapping in nonlinear medium, which has been employed to achieve vector soliton, optical switching and optical analog of gravity-like potentials. These results are generally within the definition in Hamilton system. Here, we report on the observation of a XPM-forced frequency-oscillating soliton (XFOS) whose wavelength exhibits redshift and blueshift periodically like dancing in a mode-locked fiber laser under moderate birefringence. XFOS consists of two orthogonally polarized components exhibiting simultaneous frequency oscillation driven by XPM and gain effect, which allows withstanding higher pulse energy. The pulse trapping is maintained by differentiating the frequency-shift rate. Numerical simulations agree very well with experimental results, revealing an idiosyncratic evolution dynamic for asymmetry pulses in nonlinear dissipative system and envisaging a technique to control pulse feature with preset pulse chirp. XFOS may exist generally in polarization-independent ultrafast lasers, which enriches soliton family and brings useful insights into nonlinear science and applications.
217 - Nathalie Nagl 2019
Lasers based on Cr$^{2+}$-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with super-octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiation. It is expected that the wider adoption of this technology benefits from more compact and cost-effective embodiments. Here, we report the first directly diode-pumped, Kerr-lens mode-locked Cr$^{2+}$-doped II-VI oscillator pumped by a single InP diode, providing average powers of over 500 mW and pulse durations of 45 fs - shorter than six optical cycles at 2.4 $mu$m. These correspond to a sixty-fold increase in peak power compared to the previous diode-pumped record, and are at similar levels with respect to more mature fiber-pumped oscillators. The diode-pumped femtosecond oscillator presented here constitutes a key step towards a more accessible alternative to synchrotron-like infrared radiation, and is expected to accelerate research in laser spectroscopy and ultrafast infrared optics.
Efficient, on-chip optical nonlinear processes are of great interest for the development of compact, robust, low-power consuming systems for applications in spectroscopy, metrology, sensing and classical and quantum optical information processing. Diamond holds promise for these applications, owing to its exceptional properties. However, although significant progress has been made in the development of an integrated diamond photonics platform, optical nonlinearities in diamond have not been explored much apart from Raman processes in bulk samples. Here, we demonstrate optical parametric oscillations (OPO) via four wave mixing (FWM) in single crystal diamond (SCD) optical networks on-chip consisting of waveguide-coupled microring resonators. Threshold powers as low as 20mW are enabled by ultra-high quality factor (1*10^6) diamond ring resonators operating at telecom wavelengths, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the inferred nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا