Do you want to publish a course? Click here

Rethinking Class Relations: Absolute-relative Supervised and Unsupervised Few-shot Learning

53   0   0.0 ( 0 )
 Added by Hongguang Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The majority of existing few-shot learning methods describe image relations with binary labels. However, such binary relations are insufficient to teach the network complicated real-world relations, due to the lack of decision smoothness. Furthermore, current few-shot learning models capture only the similarity via relation labels, but they are not exposed to class concepts associated with objects, which is likely detrimental to the classification performance due to underutilization of the available class labels. To paraphrase, children learn the concept of tiger from a few of actual examples as well as from comparisons of tiger to other animals. Thus, we hypothesize that in fact both similarity and class concept learning must be occurring simultaneously. With these observations at hand, we study the fundamental problem of simplistic class modeling in current few-shot learning methods. We rethink the relations between class concepts, and propose a novel Absolute-relative Learning paradigm to fully take advantage of label information to refine the image representations and correct the relation understanding in both supervised and unsupervised scenarios. Our proposed paradigm improves the performance of several the state-of-the-art models on publicly available datasets.

rate research

Read More

The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones. To address this problem, we represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes. On this basis, we propose the TOpology-Preserving knowledge InCrementer (TOPIC) framework. TOPIC mitigates the forgetting of the old classes by stabilizing NGs topology and improves the representation learning for few-shot new classes by growing and adapting NG to new training samples. Comprehensive experimental results demonstrate that our proposed method significantly outperforms other state-of-the-art class-incremental learning methods on CIFAR100, miniImageNet, and CUB200 datasets.
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works impractical. To cope with this problem, recent work performed instance-wise cross-domain self-supervised learning, followed by an additional fine-tuning stage. However, the instance-wise self-supervised learning only learns and aligns low-level discriminative features. In this paper, we propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA). PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains. Our framework captures category-wise semantic structures of the data by in-domain prototypical contrastive learning; and performs feature alignment through cross-domain prototypical self-supervision. Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively. Our project page is at http://xyue.io/pcs-fuda/index.html
Few-shot learning aims to recognize new categories using very few labeled samples. Although few-shot learning has witnessed promising development in recent years, most existing methods adopt an average operation to calculate prototypes, thus limited by the outlier samples. In this work, we propose a simple yet effective framework for few-shot classification, which can learn to generate preferable prototypes from few support data, with the help of an episodic prototype generator module. The generated prototype is meant to be close to a certain textit{targetproto{}} and is less influenced by outlier samples. Extensive experiments demonstrate the effectiveness of this module, and our approach gets a significant raise over baseline models, and get a competitive result compared to previous methods on textit{mini}ImageNet, textit{tiered}ImageNet, and cross-domain (textit{mini}ImageNet $rightarrow$ CUB-200-2011) datasets.
302 - Jianyi Li , Guizhong Liu 2021
Metric learning is a widely used method for few shot learning in which the quality of prototypes plays a key role in the algorithm. In this paper we propose the trainable prototypes for distance measure instead of the artificial ones within the meta-training and task-training framework. Also to avoid the disadvantages that the episodic meta-training brought, we adopt non-episodic meta-training based on self-supervised learning. Overall we solve the few-shot tasks in two phases: meta-training a transferable feature extractor via self-supervised learning and training the prototypes for metric classification. In addition, the simple attention mechanism is used in both meta-training and task-training. Our method achieves state-of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification dataset, with about 20% increase compared to the available unsupervised few-shot learning methods.
103 - Vivek Roy , Yan Xu , Yu-Xiong Wang 2020
We consider the few-shot classification task with an unbalanced dataset, in which some classes have sufficient training samples while other classes only have limited training samples. Recent works have proposed to solve this task by augmenting the training data of the few-shot classes using generative models with the few-shot training samples as the seeds. However, due to the limited number of the few-shot seeds, the generated samples usually have small diversity, making it difficult to train a discriminative classifier for the few-shot classes. To enrich the diversity of the generated samples, we propose to leverage the intra-class knowledge from the neighbor many-shot classes with the intuition that neighbor classes share similar statistical information. Such intra-class information is obtained with a two-step mechanism. First, a regressor trained only on the many-shot classes is used to evaluate the few-shot class means from only a few samples. Second, superclasses are clustered, and the statistical mean and feature variance of each superclass are used as transferable knowledge inherited by the children few-shot classes. Such knowledge is then used by a generator to augment the sparse training data to help the downstream classification tasks. Extensive experiments show that our method achieves state-of-the-art across different datasets and $n$-shot settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا