Do you want to publish a course? Click here

Compact Three-Dimensional Quantitative Phase Contrast Imager

76   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Detection of phase variations across optically transparent samples is often a difficult task. We propose and demonstrate a compact, lightweight and low cost quantitative phase contrast imager. Light diffracted from a pinhole is incident on a thick object and the modulated light is collected by an image sensor and the intensity pattern is recorded. Two optical configurations namely lens-based and lensless cases are compared. A modified phase-retrieval algorithm is implemented to extract the phase information of the sample at different axial planes from a single camera shot.



rate research

Read More

Optical phase contains key information for biomedical and astronomical imaging. However, it is often obscured by layers of heterogeneous and scattering media, which render optical phase imaging at different depths an utmost challenge. Limited by the memory effect, current methods for phase imaging in strong scattering media are inapplicable to retrieving phases at different depths. To address this challenge, we developed a speckle three-dimensional reconstruction network (STRN) to recognize phase objects behind scattering media, which circumvents the limitations of memory effect. From the single-shot, reference-free and scanning-free speckle pattern input, STRN distinguishes depth-resolving quantitative phase information with high fidelity. Our results promise broad applications in biomedical tomography and endoscopy.
We present differential phase-contrast optical coherence tomography (DPC-OCT) with two transversally separated probing beams to sense phase gradients in various directions by employing a rotatable Wollaston prism. In combination with a two-dimensional mathe- matical reconstruction algorithm based on a regularized shape from shading (SfS) method accurate quantitative phase maps can be determined from a set of two orthogonal en-face DPC-OCT images, as exemplified on various technical samples.
Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5T and 3T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2% - 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 minutes. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.
When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. In- terference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher con- trast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).
Electron tomography is a technique used in both materials science and structural biology to image features well below optical resolution limit. In this work, we present a new algorithm for reconstructing the three-dimensional(3D) electrostatic potential of a sample at atomic resolution from phase contrast imaging using high-resolution transmission electron microscopy. Our method accounts for dynamical and strong phase scattering, providing more accurate results with much lower electron doses than those current atomic electron tomography experiments. We test our algorithm using simulated images of a synthetic needle geometry dataset composed of an amorphous silicon dioxide shell around a silicon core. Our results show that, for a wide range of experimental parameters, we can accurately determine both atomic positions and species, and also identify vacancies even for light elements such as silicon and disordered materials such as amorphous silicon dioxide and also identify vacancies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا