Do you want to publish a course? Click here

Joint Time Scheduling and Transaction Fee Selection in Blockchain-based RF-Powered Backscatter Cognitive Radio Network

62   0   0.0 ( 0 )
 Added by Cong Luong Nguyen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we develop a new framework called blockchain-based Radio Frequency (RF)-powered backscatter cognitive radio network. In the framework, IoT devices as secondary transmitters transmit their sensing data to a secondary gateway by using the RF-powered backscatter cognitive radio technology. The data collected at the gateway is then sent to a blockchain network for further verification, storage and processing. As such, the framework enables the IoT system to simultaneously optimize the spectrum usage and maximize the energy efficiency. Moreover, the framework ensures that the data collected from the IoT devices is verified, stored and processed in a decentralized but in a trusted manner. To achieve the goal, we formulate a stochastic optimization problem for the gateway under the dynamics of the primary channel, the uncertainty of the IoT devices, and the unpredictability of the blockchain environment. In the problem, the gateway jointly decides (i) the time scheduling, i.e., the energy harvesting time, backscatter time, and transmission time, among the IoT devices, (ii) the blockchain network, and (iii) the transaction fee rate to maximize the network throughput while minimizing the cost. To solve the stochastic optimization problem, we then propose to employ, evaluate, and assess the Deep Reinforcement Learning (DRL) with Dueling Double Deep Q-Networks (D3QN) to derive the optimal policy for the gateway. The simulation results clearly show that the proposed solution outperforms the conventional baseline approaches such as the conventional Q-Learning algorithm and non-learning algorithms in terms of network throughput and convergence speed. Furthermore, the proposed solution guarantees that the data is stored in the blockchain network at a reasonable cost.



rate research

Read More

For an RF-powered cognitive radio network with ambient backscattering capability, while the primary channel is busy, the RF-powered secondary user (RSU) can either backscatter the primary signal to transmit its own data or harvest energy from the primary signal (and store in its battery). The harvested energy then can be used to transmit data when the primary channel becomes idle. To maximize the throughput for the secondary system, it is critical for the RSU to decide when to backscatter and when to harvest energy. This optimal decision has to account for the dynamics of the primary channel, energy storage capability, and data to be sent. To tackle that problem, we propose a Markov decision process (MDP)-based framework to optimize RSUs decisions based on its current states, e.g., energy, data as well as the primary channel state. As the state information may not be readily available at the RSU, we then design a low-complexity online reinforcement learning algorithm that guides the RSU to find the optimal solution without requiring prior- and complete-information from the environment. The extensive simulation results then clearly show that the proposed solution achieves higher throughputs, i.e., up to 50%, than that of conventional methods.
Future IoT networks consist of heterogeneous types of IoT devices (with various communication types and energy constraints) which are assumed to belong to an IoT service provider (ISP). To power backscattering-based and wireless-powered devices, the ISP has to contract with an energy service provider (ESP). This article studies the strategic interactions between the ISP and its ESP and their implications on the joint optimal time scheduling and energy trading for heterogeneous devices. To that end, we propose an economic framework using the Stackelberg game to maximize the network throughput and energy efficiency of both the ISP and ESP. Specifically, the ISP leads the game by sending its optimal service time and energy price request (that maximizes its profit) to the ESP. The ESP then optimizes and supplies the transmission power which satisfies the ISPs request (while maximizing ESPs utility). To obtain the Stackelberg equilibrium (SE), we apply a backward induction technique which first derives a closed-form solution for the ESP. Then, to tackle the non-convex optimization problem for the ISP, we leverage the block coordinate descent and convex-concave procedure techniques to design two partitioning schemes (i.e., partial adjustment (PA) and joint adjustment (JA)) to find the optimal energy price and service time that constitute local SEs. Numerical results reveal that by jointly optimizing the energy trading and the time allocation for heterogeneous IoT devices, one can achieve significant improvements in terms of the ISPs profit compared with those of conventional transmission methods. Different tradeoffs between the ESPs and ISPs profits and complexities of the PA/JA schemes can also be numerically tuned. Simulations also show that the obtained local SEs approach the socially optimal welfare when the ISPs benefit per transmitted bit is higher than a given threshold.
In this paper, we introduce a backscatter assisted wirelessly powered mobile edge computing (MEC) network, where each edge user (EU) can offload task bits to the MEC server via hybrid harvest-then-transmit (HTT) and backscatter communications. In particular, considering a practical non-linear energy harvesting (EH) model and a partial offloading scheme at each EU, we propose a scheme to maximize the weighted sum computation bits of all the EUs by jointly optimizing the backscatter reflection coefficient and time, active transmission power and time, local computing frequency and execution time of each EU. By introducing a series of auxiliary variables and using the properties of the non-linear EH model, we transform the original non-convex problem into a convex one and derive closedform expressions for parts of the optimal solutions. Simulation results demonstrate the advantage of the proposed scheme over benchmark schemes in terms of weighted sum computation bits.
Ambient backscatter has been introduced with a wide range of applications for low power wireless communications. In this article, we propose an optimal and low-complexity dynamic spectrum access framework for RF-powered ambient backscatter system. In this system, the secondary transmitter not only harvests energy from ambient signals (from incumbent users), but also backscatters these signals to its receiver for data transmission. Under the dynamics of the ambient signals, we first adopt the Markov decision process (MDP) framework to obtain the optimal policy for the secondary transmitter, aiming to maximize the system throughput. However, the MDP-based optimization requires complete knowledge of environment parameters, e.g., the probability of a channel to be idle and the probability of a successful packet transmission, that may not be practical to obtain. To cope with such incomplete knowledge of the environment, we develop a low-complexity online reinforcement learning algorithm that allows the secondary transmitter to learn from its decisions and then attain the optimal policy. Simulation results show that the proposed learning algorithm not only efficiently deals with the dynamics of the environment, but also improves the average throughput up to 50% and reduces the blocking probability and delay up to 80% compared with conventional methods.
68 - Tim Roughgarden 2021
Demand for blockchains such as Bitcoin and Ethereum is far larger than supply, necessitating a mechanism that selects a subset of transactions to include on-chain from the pool of all pending transactions. This paper investigates the problem of designing a blockchain transaction fee mechanism through the lens of mechanism design. We introduce two new forms of incentive-compatibility that capture some of the idiosyncrasies of the blockchain setting, one (MMIC) that protects against deviations by profit-maximizing miners and one (OCA-proofness) that protects against off-chain collusion between miners and users. This study is immediately applicable to a recent (August 5, 2021) and major change to Ethereums transaction fee mechanism, based on a proposal called EIP-1559. Historically, Ethereums transaction fee mechanism was a first-price (pay-as-bid) auction. EIP-1559 suggested making several tightly coupled changes, including the introduction of variable-size blocks, a history-dependent reserve price, and the burning of a significant portion of the transaction fees. We prove that this new mechanism earns an impressive report card: it satisfies the MMIC and OCA-proofness conditions, and is also dominant-strategy incentive compatible (DSIC) except when there is a sudden demand spike. We also introduce an alternative design, the tipless mechanism, which offers an incomparable slate of incentive-compatibility guarantees -- it is MMIC and DSIC, and OCA-proof unless in the midst of a demand spike.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا