No Arabic abstract
Reading the magnetic state of antiferromagnetic (AFM) thin films is key for AFM spintronic devices. We investigate the underlying physics behind the spin Hall magnetoresistance (SMR) of bilayers of platinum and insulating AFM hematite ({alpha}-Fe2O3) and find an SMR efficiency of up to 0.1%, comparable to ferromagnetic based structures. To understand the observed complex SMR field dependence, we analyse the effect of misalignments of the magnetic axis that arise during growth of thin films, by electrical measurements and direct magnetic imaging, and find that a small deviation can result in significant signatures in the SMR response. This highlights the care that must be taken when interpreting SMR measurements on AFM spin textures.
TmFeO$_3$ (TFO) is a canted antiferromagnet that undergoes a spin reorientation transition (SRT) with temperature between 82 K and 94 K in single crystals. In this temperature region, the Neel vector continuously rotates from the crystallographic $c$-axis (below 82 K) to the $a$-axis (above 94 K). The SRT allows for a temperature control of distinct antiferromagnetic states without the need for a magnetic field, making it apt for applications working at THz frequencies. For device applications, thin films of TFO are required as well as an electrical technique for reading out the magnetic state. Here we demonstrate that orthorhombic TFO thin films can be grown by pulsed laser deposition and the detection of the SRT in TFO thin films can be accessed by making use of the all electrical spin Hall magnetoresistance (SMR), in good agreement for the temperature range where the SRT occurs. Our results demonstrate that one can electrically detect the SRT in insulators.
We report the observation of the three-dimensional angular dependence of the spin Hall magnetoresistance (SMR) in a bilayer of the epitaxial antiferromagnetic insulator NiO(001) and the heavy metal Pt, without any ferromagnetic element. The detected angular-dependent longitudinal and transverse magnetoresistances are measured by rotating the sample in magnetic fields up to 11 T, along three orthogonal planes (xy-, yz- and xz-rotation planes, where the z-axis is orthogonal to the sample plane). The total magnetoresistance has contributions arising from both the SMR and ordinary magnetoresistance. The onset of the SMR signal occurs between 1 and 3 T and no saturation is visible up to 11 T. The three-dimensional angular dependence of the SMR can be explained by a model considering the reversible field-induced redistribution of magnetostrictive antiferromagnetic S- and T-domains in the NiO(001), stemming from the competition between the Zeeman energy and the elastic clamping effect of the non-magnetic MgO substrate. From the observed SMR ratio, we estimate the spin mixing conductance at the NiO/Pt interface to be greater than $2times10^{14}$ ${Omega}^{-1}$ $m^{-2}$. Our results demonstrate the possibility to electrically detect the Neel vector direction in stable NiO(001) thin films, for rotations in the xy- and xz- planes. Moreover, we show that a careful subtraction of the ordinary magnetoresistance contribution is crucial to correctly estimate the amplitude of the SMR.
Antiferromagnetic materials promise improved performance for spintronic applications, as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators $alpha$-Fe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy metal top electrode. While rotating an external magnetic field in three orthogonal planes, we record the longitudinal and the transverse resistivities of Pt and observe characteristic resistivity modulations consistent with the SMR effect. We analyze both their amplitude and phase and compare the data to the results from a prototypical collinear ferrimagnetic Y3Fe5O12/Pt bilayer. The observed magnetic field dependence is explained in a comprehensive model, based on two magnetic sublattices and taking into account magnetic field-induced modifications of the domain structure. Our results show that the SMR allows us to understand the spin configuration and to investigate magnetoelastic effects in antiferromagnetic multi-domain materials. Furthermore, in $alpha$-Fe2O3/Pt bilayers, we find an unexpectedly large SMR amplitude of $2.5 times 10^{-3}$, twice as high as for prototype Y3Fe5O12/Pt bilayers, making the system particularly interesting for room-temperature antiferromagnetic spintronic applications.
We show that the spin-orbit coupling (SOC) in alpha-MnTe impacts the transport behavior by generating an anisotropic valence-band splitting, resulting in four spin-polarized pockets near Gamma. A minimal k-dot-p model is constructed to capture this splitting by group theory analysis, a tight-binding model and ab initio calculations. The model is shown to describe the rotation symmetry of the zero-field planer Hall effect (PHE). The upper limit of the PHE percentage is shown to be fundamentally determined by the band shape, and is quantitatively estimated to be roughly 31% by first principles.
An electric method for measuring magnetic anisotropy in antiferromagnetic insulators (AFIs) is proposed. When a metallic film with strong spin-orbit interactions, e.g., platinum (Pt), is deposited on an AFI, its resistance should be affected by the direction of the AFI N eel vector due to the spin Hall magnetoresistance (SMR). Accordingly, the direction of the AFI N eel vector, which is affected by both the external magnetic field and the magnetic anisotropy, is reflected in resistance of Pt. The magnetic field angle dependence of the resistance of Pt on AFI is calculated by consider- ing the SMR, which indicates that the antiferromagnetic anisotropy can be obtained experimentally by monitoring the Pt resistance in strong magnetic fields. Calculations are performed for realistic systems such as Pt/Cr2O3, Pt/NiO, and Pt/CoO.