No Arabic abstract
Motivated by the recently observed insulating states in twisted bilayer graphene, we study the nature of the correlated insulating phases of the twisted bilayer graphene at commensurate filling fractions. We use the continuum model and project the Coulomb interaction onto the flat bands to study the ground states by using a Hartree-Fock approximation. In the absence of the hexagonal boron nitride substrate, the ground states are the intervalley coherence states at charge neutrality (filling $ u$ = 0, or four electrons per moire cell) and at $ u$ = -1/4 and -1/2 (three and two electrons per cell, respectively) and the $C_2mathcal{T}$ symmetry-broken state at $ u$= -3/4 (one electron per cell). The hexagonal boron nitride substrate drives the ground states at all $ u$ into $C_2mathcal{T}$ symmetry broken-states. Our results provide good reference points for further study of the rich correlated physics in the twisted bilayer graphene.
The rich phenomenology of twisted bilayer graphene (TBG) near the magic angle is believed to arise from electron correlations in topological flat bands. An unbiased approach to this problem is highly desirable, but also particularly challenging, given the multiple electron flavors, the topological obstruction to defining tight binding models and the long-ranged Coulomb interactions. While numerical simulations of realistic models have thus far been confined to zero temperature, typically excluding some spin or valley species, analytic progress has relied on fixed point models away from the realistic limit. Here we present for the first time unbiased Monte Carlo simulations of realistic models of magic angle TBG at charge-neutrality. We establish the absence of a sign problem for this model in a momentum space approach, and describe a computationally tractable formulation that applies even on breaking chiral symmetry and including band dispersion. Our results include (i) the emergence of an insulating Kramers inter-valley coherent ground state in competition with a correlated semi-metal phase, (ii) detailed temperature evolution of order parameters and electronic spectral functions which reveal a `pseudogap regime, in which gap features are established at a higher temperature than the onset of order and (iii) predictions for electronic tunneling spectra and their evolution with temperature. Our results pave the way towards uncovering the physics of magic angle graphene through exact simulations of over a hundred electrons across a wide temperature range.
In this work, we determine states of electronic order of small-angle twisted bilayer graphene. Ground states are determined for weak and strong couplings which are representatives for varying distances of the twist-angle from its magic value. In the weak-coupling regime, charge density waves emerge which break translational and $C_{3}$-rotational symmetry. In the strong coupling-regime, we find rotational and translational symmetry breaking Mott insulating states for all commensurate moire band fillings. Depending on the local occupation of superlattice sites hosting up to four electrons, global spin-(ferromagnetic) and valley symmetries are also broken which may give rise to a reduced Landau level degeneracy as observed in experiments for commensurate band fillings. The formation of those particular electron orders is traced back to the important role of characteristic non-local interactions which connect all localized states belonging to one hexagon formed by the AB- and BA-stacked regions of the superlattice.
Recent experiments on twisted bilayer graphene have shown a high-temperature parent state with massless Dirac fermions and broken electronic flavor symmetry; superconductivity and correlated insulators emerge from this parent state at lower temperatures. We propose that the superconducting and correlated insulating orders are connected by Wess-Zumino-Witten terms, so that defects of one order contain quanta of another order and skyrmion fluctuations of the correlated insulator are a mechanism for superconductivity. We present a comprehensive listing of plausible low-temperature orders, and the parent flavor symmetry breaking orders. The previously characterized topological nature of the band structure of twisted bilayer graphene plays an important role in this analysis.
Flat electronic bands, characteristic of magic-angle twisted bilayer graphene (TBG), host a wealth of correlated phenomena. Early theoretical considerations suggested that, at the magic angle, the Dirac velocity vanishes and the entire width of the moire bands becomes extremely narrow. Yet, this scenario contradicts experimental studies that reveal a finite Dirac velocity as well as bandwidths significantly larger than predicted. Here we use spatially resolved spectroscopy in finite and zero magnetic fields to examine the electronic structure of moire bands and their intricate connection to correlated phases. By following the relative shifts of Landau levels in finite fields, we detect filling-dependent band flattening, that unexpectedly starts already at ~1.3 degrees, well above the magic angle and hence nominally in the weakly correlated regime. We further show that, as the twist angle is reduced, the moire bands become maximally flat at progressively lower doping levels. Surprisingly, when the twist angles reach values for which the maximal flattening occurs at approximate filling of $-2$, $+1$,$+2$,$+3$ electrons per moire unit cell, the corresponding zero-field correlated phases start to emerge. Our observations are corroborated by calculations that incorporate an interplay between the Coulomb charging energy and exchange interactions; together these effects produce band flattening and hence a significant density-of-states enhancement that facilitates the observed symmetry-breaking cascade transitions. Besides emerging phases pinned to integer fillings, we also experimentally identify a series of pronounced correlation-driven band deformations and soft gaps in a wider doping range around $pm 2$ filling where superconductivity is expected. Our results highlight the role of interaction-driven band-flattening in forming robust correlated phases in TBG.
Twisted bilayer transition metal dichalcogenides have emerged as important model systems for the investigation of correlated electron physics because their interaction strength, carrier concentration, band structure, and inversion symmetry breaking are controllable by device fabrication, twist angle, and most importantly, gate voltage, which can be varied in situ. The low energy physics of some of these materials has been shown to be described by a moire Hubbard model generalized from the usual Hubbard model by the addition of strong, tunable spin orbit coupling and inversion symmetry breaking. In this work, we use a Hartree-Fock approximation to reach a comprehensive understanding of the moire Hubbard model on the mean field level. We determine the magnetic and metal-insulator phase diagrams, and assess the effects of spin orbit coupling, inversion symmetry breaking, and the tunable van Hove singularity. We also consider the spin and orbital effects of applied magnetic fields. This work provides guidance for experiments and sets the stage for beyond mean-field calculations.