No Arabic abstract
The crystals for a finite-dimensional complex reductive Lie algebra $mathfrak{g}$ encode the structure of its representations, yet can also reveal surprising new structure of their own. We study the cactus group $C_{mathfrak{g}}$, constructed using the Dynkin diagram of $mathfrak{g}$, and its combinatorial action on any $mathfrak{g}$-crystal via Sch{u}tzenberger involutions. We compare this action with that of the Berenstein-Kirillov group on Gelfand-Tsetlin patterns. Henriques and Kamnitzer define an action of $C_n=C_{mathfrak{gl}_n}$ on $n$-tensor products of $mathfrak{g}$-crystals, for any $mathfrak{g}$ as above. We discuss the crystal corresponding to the $mathfrak{gl}_n times mathfrak{gl}_m$-representation $Lambda^N(mathbb{C}^n otimes mathbb{C}^m),$ derive skew Howe duality on the crystal level and show that the two types of cactus group actions agree in this setting. A future application of this result is discussed in studying two families of maximal commutative subalgebras of the universal enveloping algebra, the shift of argument and Gaudin algebras, where an algebraically constructed monodromy action matches that of the cactus group.
Let $mathfrak{g}$ be a semisimple simply-laced Lie algebra of finite type. Let $mathcal{C}$ be an abelian categorical representation of the quantum group $U_q(mathfrak{g})$ categorifying an integrable representation $V$. The Artin braid group $B$ of $mathfrak{g}$ acts on $D^b(mathcal{C})$ by Rickard complexes, providing a triangulated equivalence $Theta_{w_0}:D^b(mathcal{C}_mu) to D^b(mathcal{C}_{w_0(mu)})$, where $mu$ is a weight of $V$ and $Theta_{w_0}$ is a positive lift of the longest element of the Weyl group. We prove that this equivalence is t-exact up to shift when $V$ is isotypic, generalising a fundamental result of Chuang and Rouquier in the case $mathfrak{g}=mathfrak{sl}_2$. For general $V$, we prove that $Theta_{w_0}$ is a perverse equivalence with respect to a Jordan-Holder filtration of $mathcal{C}$. Using these results we construct, from the action of $B$ on $V$, an action of the cactus group on the crystal of $V$. This recovers the cactus group action on $V$ defined via generalised Schutzenberger involutions, and provides a new connection between categorical representation theory and crystal bases. We also use these results to give new proofs of theorems of Berenstein-Zelevinsky, Rhoades, and Stembridge regarding the action of symmetric group on the Kazhdan-Lusztig basis of its Specht modules.
We formulate a general super duality conjecture on connections between parabolic categories O of modules over Lie superalgebras and Lie algebras of type A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was initiated by Brundan. We show that the Brundan-Kazhdan-Lusztig (BKL) polynomials for Lie superalgebra gl(m|n) in our parabolic setup can be identified with the usual parabolic Kazhdan-Lusztig polynomials. We establish some special cases of the BKL conjecture on the parabolic category O of gl(m|n)-modules and additional results which support the BKL conjecture and super duality conjecture.
Using Howe duality we compute explicitly Kostant-type homology groups for a wide class of representations of the infinite-dimensional Lie superalgebra $hat{frak{gl}}_{infty|infty}$ and its classical subalgebras at positive integral levels. We also obtain Kostant-type homology formulas for the Lie algebra $ widehat{frak{gl}}_infty$ at negative integral levels. We further construct resolutions in terms of generalized Verma modules for these representations.
Fix a semisimple Lie algebra g. Gaudin algebras are commutative algebras acting on tensor product multiplicity spaces for g-representations. These algebras depend on a parameter which is a point in the Deligne-Mumford moduli space of marked stable genus 0 curves. When the parameter is real, then the Gaudin algebra acts with simple spectrum on the tensor product multiplicity space and gives us a basis of eigenvectors. In this paper, we study the monodromy of these eigenvectors as the parameter varies within the real locus; this gives an action of the fundamental group of this moduli space, which is called the cactus group. We prove a conjecture of Etingof which states that the monodromy of eigenvectors for Gaudin algebras agrees with the action of the cactus group on tensor products of g-crystals. In fact, we prove that the coboundary category of normal g-crystals can be reconstructed using the coverings of the moduli spaces. Our main tool is the construction of a crystal structure on the set of eigenvectors for shift of argument algebras, another family of commutative algebras which act on any irreducible g-representation. We also prove that the monodromy of such eigenvectors is given by the internal cactus group action on g-crystals.
We study the relation between quantum affine algebras of type A and Grassmannian cluster algebras. Hernandez and Leclerc described an isomorphism from the Grothendieck ring of a certain subcategory $mathcal{C}_{ell}$ of $U_q(hat{mathfrak{sl}_n})$-modules to a quotient of the Grassmannian cluster algebra in which certain frozen variables are set to 1. We explain how this induces an isomorphism between the monoid of dominant monomials, used to parameterize simple modules, and a quotient of the monoid of rectangular semistandard Young tableaux. Via the isomorphism, we define an element ch(T) in a Grassmannian cluster algebra for every rectangular tableau T. By results of Kashiwara, Kim, Oh, and Park, and also of Qin, every Grassmannian cluster monomial is of the form ch(T) for some T. Using formulas of Arakawa-Suzuki, we give an explicit expression for ch(T), and also give explicit q-character formulas for finite-dimensional $U_q(hat{mathfrak{sl}_n})$-modules. We give a tableau-theoretic rule for performing mutations in Grassmannian cluster algebras. We suggest how our formulas might be used to study reality and primeness of modules, and compatibility of cluster variables.