Do you want to publish a course? Click here

Gravitational form factor constraints and their universality

70   0   0.0 ( 0 )
 Added by Peter Lowdon
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

By adopting a local QFT framework one can derive in a non-perturbative manner the constraints imposed by Poincare symmetry on the form factors appearing in the Lorentz covariant decomposition of the energy-momentum tensor matrix elements. In particular, this approach enables one to prove that these constraints are in fact independent of the internal properties of the states appearing in the matrix elements. Here we outline the rationale behind this approach, and report on some of the implications of these findings.



rate research

Read More

103 - Cedric Lorce , Peter Lowdon 2019
Relativistic spin states are convention dependent. In this work we prove that the zero momentum-transfer limits of the leading two form factors in the decomposition of the energy-momentum tensor matrix elements are independent of this choice. In particular, we demonstrate that these constraints are insensitive to whether the corresponding states are massive or not, and that they arise purely due to the Poincare covariance of the states.
In this work we analyse the constraints imposed by Poincare symmetry on the gravitational form factors appearing in the Lorentz decomposition of the energy-momentum tensor matrix elements for massive states with arbitrary spin. By adopting a distributional approach, we prove for the first time non-perturbatively that the zero momentum transfer limit of the leading two form factors in the decomposition are completely independent of the spin of the states. It turns out that these constraints arise due to the general Poincare transformation and on-shell properties of the states, as opposed to the specific characteristics of the individual Poincare generators themselves. By expressing these leading form factors in terms of generalised parton distributions, we subsequently derive the linear and angular momentum sum rules for states with arbitrary spin.
We calculate and analyse non-local gravitational form factors induced by quantum matter fields in curved two-dimensional space. The calculations are performed for scalars, spinors and massive vectors by means of the covariant heat kernel method up to the second order in the curvature and confirmed using Feynman diagrams. The analysis of the ultraviolet (UV) limit reveals a generalized running form of the Polyakov action for a nonminimal scalar field and the usual Polyakov action in the conformally invariant cases. In the infrared (IR) we establish the gravitational decoupling theorem, which can be seen directly from the form factors or from the physical beta function for fields of any spin.
We show that it is impossible to improve the high-energy behavior of the tree-level four-point amplitude of a massive spin-2 particle by including the exchange of any number of scalars and vectors in four spacetime dimensions. This constrains possible weakly coupled ultraviolet extensions of massive gravity, ruling out gravitational analogues of the Higgs mechanism based on particles with spins less than two. Any tree-level ultraviolet extension that is Lorentz invariant and unitary must involve additional massive particles with spins greater than or equal to two, as in Kaluza-Klein theories and string theory.
93 - Yu Hamada , Jan M. Pawlowski , 2020
We study anomalous chiral symmetry breaking in two-flavour QCD induced by gravitational and QCD-instantons within asymptotically safe gravity within the functional renormalisation group approach. Similarly to QCD-instantons, gravitational ones, associated to a K3-surface connected by a wormhole-like throat in flat spacetime, generate contributions to the t~Hooft coupling proportional to $exp(-1/g_N)$ with the dimensionless Newton coupling $g_N$. Hence, in the asymptotically safe gravity scenario with a non-vanishing fixed point coupling $g_N^*$, the induced t Hooft coupling is finite at the Planck scale, and its size depends on the chosen UV-completion. Within this scenario the gravitational effects on anomalous $U(1)_A$-breaking at the Planck scale may survive at low energy scales. In turn, fermion masses of the order of the Planck scale cannot be present. This constrains the allowed asymptotically safe UV-completion of the Gravity-QCD system. We map-out the parameter regime that is compatible with the existence of light fermions in the low-energy regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا