We calculate and analyse non-local gravitational form factors induced by quantum matter fields in curved two-dimensional space. The calculations are performed for scalars, spinors and massive vectors by means of the covariant heat kernel method up to the second order in the curvature and confirmed using Feynman diagrams. The analysis of the ultraviolet (UV) limit reveals a generalized running form of the Polyakov action for a nonminimal scalar field and the usual Polyakov action in the conformally invariant cases. In the infrared (IR) we establish the gravitational decoupling theorem, which can be seen directly from the form factors or from the physical beta function for fields of any spin.
In this work we analyse the constraints imposed by Poincare symmetry on the gravitational form factors appearing in the Lorentz decomposition of the energy-momentum tensor matrix elements for massive states with arbitrary spin. By adopting a distributional approach, we prove for the first time non-perturbatively that the zero momentum transfer limit of the leading two form factors in the decomposition are completely independent of the spin of the states. It turns out that these constraints arise due to the general Poincare transformation and on-shell properties of the states, as opposed to the specific characteristics of the individual Poincare generators themselves. By expressing these leading form factors in terms of generalised parton distributions, we subsequently derive the linear and angular momentum sum rules for states with arbitrary spin.
Hairy black holes in the gravitational decoupling setup are studied from the perspective of conformal anomalies. Fluctuations of decoupled sources can be computed by measuring the way the trace anomaly-to-holographic Weyl anomaly ratio differs from unit. Therefore the gravitational decoupling parameter governing three hairy black hole metrics is then bounded to a range wherein one can reliably emulate AdS/CFT with gravitational decoupled solutions, in the tensor vacuum regime.
We extend previous calculations of the non-local form factors of semiclassical gravity in $4D$ to include the Einstein-Hilbert term. The quantized fields are massive scalar, fermion and vector fields. The non-local form factor in this case can be seen as the sum of a power series of total derivatives, but it enables us to derive the beta function of Newtons constant and formally evaluate the decoupling law in the new sector, which turns out to be the standard quadratic one.
By adopting a local QFT framework one can derive in a non-perturbative manner the constraints imposed by Poincare symmetry on the form factors appearing in the Lorentz covariant decomposition of the energy-momentum tensor matrix elements. In particular, this approach enables one to prove that these constraints are in fact independent of the internal properties of the states appearing in the matrix elements. Here we outline the rationale behind this approach, and report on some of the implications of these findings.
Relativistic spin states are convention dependent. In this work we prove that the zero momentum-transfer limits of the leading two form factors in the decomposition of the energy-momentum tensor matrix elements are independent of this choice. In particular, we demonstrate that these constraints are insensitive to whether the corresponding states are massive or not, and that they arise purely due to the Poincare covariance of the states.