Do you want to publish a course? Click here

Convexification for an Inverse Parabolic Problem

139   0   0.0 ( 0 )
 Added by Michael Klibanov V.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A convexification-based numerical method for a Coefficient Inverse Problem for a parabolic PDE is presented. The key element of this method is the presence of the so-called Carleman Weight Function in the numerical scheme. Convergence analysis ensures the global convergence of this method, as opposed to the local convergence of the conventional least squares minimization techniques. Numerical results demonstrate a good performance.

rate research

Read More

277 - J. Huang , Z. Deng , L. Xu 2021
In this work, we are interested in the determination of the shape of the scatterer for the two dimensional time harmonic inverse medium scattering problems in acoustics. The scatterer is assumed to be a piecewise constant function with a known value inside inhomogeneities, and its shape is represented by the level set functions for which we investigate the information using the Bayesian method. In the Bayesian framework, the solution of the geometric inverse problem is defined as a posterior probability distribution. The well-posedness of the posterior distribution would be discussed, and the Markov chain Monte Carlo (MCMC) methods will be applied to generate samples from the arising posterior distribution. Numerical experiments will be presented to demonstrate the effectiveness of the proposed method.
We consider stochastic differential equations driven by a general Levy processes (SDEs) with infinite activity and the related, via the Feynman-Kac formula, Dirichlet problem for parabolic integro-differential equation (PIDE). We approximate the solution of PIDE using a numerical method for the SDEs. The method is based on three ingredients: (i) we approximate small jumps by a diffusion; (ii) we use restricted jump-adaptive time-stepping; and (iii) between the jumps we exploit a weak Euler approximation. We prove weak convergence of the considered algorithm and present an in-depth analysis of how its error and computational cost depend on the jump activity level. Results of some numerical experiments, including pricing of barrier basket currency options, are presented.
97 - Qi Tao , Yong Liu , Yan Jiang 2021
In this paper, we develop an oscillation free local discontinuous Galerkin (OFLDG) method for solving nonlinear degenerate parabolic equations. Following the idea of our recent work [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal. 59(2021), pp. 1299-1324.], we add the damping terms to the LDG scheme to control the spurious oscillations when solutions have a large gradient. The $L^2$-stability and optimal priori error estimates for the semi-discrete scheme are established. The numerical experiments demonstrate that the proposed method maintains the high-order accuracy and controls the spurious oscillations well.
For the first time, we develop a convergent numerical method for the llinear integral equation derived by M.M. Lavrentev in 1964 with the goal to solve a coefficient inverse problem for a wave-like equation in 3D. The data are non overdetermined. Convergence analysis is presented along with the numerical results. An intriguing feature of the Lavrentev equation is that, without any linearization, it reduces a highly nonlinear coefficient inverse problem to a linear integral equation of the first kind. Nevertheless, numerical results for that equation, which use the data generated for that coefficient inverse problem, show a good reconstruction accuracy. This is similar with the classical Gelfand-Levitan equation derived in 1951, which is valid in the 1D case.
A direct reconstruction algorithm based on Calderons linearization method for the reconstruction of isotropic conductivities is proposed for anisotropic conductivities in two-dimensions. To overcome the non-uniqueness of the anisotropic inverse conductivity problem, the entries of the unperturbed anisotropic tensors are assumed known emph{a priori}, and it remains to reconstruct the multiplicative scalar field. The quasi-conformal map in the plane facilitates the Calderon-based approach for anisotropic conductivities. The method is demonstrated on discontinuous radially symmetric conductivities of high and low contrast.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا