No Arabic abstract
For the first time, we develop a convergent numerical method for the llinear integral equation derived by M.M. Lavrentev in 1964 with the goal to solve a coefficient inverse problem for a wave-like equation in 3D. The data are non overdetermined. Convergence analysis is presented along with the numerical results. An intriguing feature of the Lavrentev equation is that, without any linearization, it reduces a highly nonlinear coefficient inverse problem to a linear integral equation of the first kind. Nevertheless, numerical results for that equation, which use the data generated for that coefficient inverse problem, show a good reconstruction accuracy. This is similar with the classical Gelfand-Levitan equation derived in 1951, which is valid in the 1D case.
In this article we study the numerical solution of the $L^1$-Optimal Transport Problem on 2D surfaces embedded in $R^3$, via the DMK formulation introduced in [FaccaCardinPutti:2018]. We extend from the Euclidean into the Riemannian setting the DMK model and conjecture the equivalence with the solution Monge-Kantorovich equations, a PDE-based formulation of the $L^1$-Optimal Transport Problem. We generalize the numerical method proposed in [FaccaCardinPutti:2018,FaccaDaneriCardinPutti:2020] to 2D surfaces embedded in $REAL^3$ using the Surface Finite Element Model approach to approximate the Laplace-Beltrami equation arising from the model. We test the accuracy and efficiency of the proposed numerical scheme, comparing our approximate solution with respect to an exact solution on a 2D sphere. The results show that the numerical scheme is efficient, robust, and more accurate with respect to other numerical schemes presented in the literature for the solution of ls$L^1$-Optimal Transport Problem on 2D surfaces.
We consider a size-structured model for cell division and address the question of determining the division (birth) rate from the measured stable size distribution of the population. We propose a new regularization technique based on a filtering approach. We prove convergence of the algorithm and validate the theoretical results by implementing numerical simulations, based on classical techniques. We compare the results for direct and inverse problems, for the filtering method and for the quasi-reversibility method proposed in [Perthame-Zubelli].
This article deals with the efficient and accurate computation of the electrostatic forces between charged, spherical dielectric particles undergoing mutual polarisation. We use the spectral Galerkin boundary integral equation framework developed by Lindgren et al. (J. Comput. Phys. 371 (2018): 712-731) and subsequently analysed in two earlier contributions of the authors to propose a linear scaling in cost algorithm for the computation of the approximate forces. We establish exponential convergence of the method and derive error estimates for the approximate forces that do not explicitly depend on the number of dielectric particles $N$. Consequently, the proposed method requires only $mathcal{O}(N)$ operations to compute the electrostatic forces acting on $N$ dielectric particles up to any given and fixed relative error.
We present a computational study of several preconditioning techniques for the GMRES algorithm applied to the stochastic diffusion equation with a lognormal coefficient discretized with the stochastic Galerkin method. The clear block structure of the system matrix arising from this type of discretization motivates the analysis of preconditioners designed according to a field-splitting strategy of the stochastic variables. This approach is inspired by a similar procedure used within the framework of physics based preconditioners for deterministic problems, and its application to stochastic PDEs represents the main novelty of this work. Our numerical investigation highlights the superior properties of the field-split type preconditioners over other existing strategies in terms of computational time and stochastic parameter dependence.
In this work, a complete error analysis is presented for fully discrete solutions of the subdiffusion equation with a time-dependent diffusion coefficient, obtained by the Galerkin finite element method with conforming piecewise linear finite elements in space and backward Euler convolution quadrature in time. The regularity of the solutions of the subdiffusion model is proved for both nonsmooth initial data and incompatible source term. Optimal-order convergence of the numerical solutions is established using the proven solution regularity and a novel perturbation argument via freezing the diffusion coefficient at a fixed time. The analysis is supported by numerical experiments.