Do you want to publish a course? Click here

Speech Enhancement based on Denoising Autoencoder with Multi-branched Encoders

94   0   0.0 ( 0 )
 Added by Yu Tsao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep learning-based models have greatly advanced the performance of speech enhancement (SE) systems. However, two problems remain unsolved, which are closely related to model generalizability to noisy conditions: (1) mismatched noisy condition during testing, i.e., the performance is generally sub-optimal when models are tested with unseen noise types that are not involved in the training data; (2) local focus on specific noisy conditions, i.e., models trained using multiple types of noises cannot optimally remove a specific noise type even though the noise type has been involved in the training data. These problems are common in real applications. In this paper, we propose a novel denoising autoencoder with a multi-branched encoder (termed DAEME) model to deal with these two problems. In the DAEME model, two stages are involved: training and testing. In the training stage, we build multiple component models to form a multi-branched encoder based on a decision tree (DSDT). The DSDT is built based on prior knowledge of speech and noisy conditions (the speaker, environment, and signal factors are considered in this paper), where each component of the multi-branched encoder performs a particular mapping from noisy to clean speech along the branch in the DSDT. Finally, a decoder is trained on top of the multi-branched encoder. In the testing stage, noisy speech is first processed by each component model. The multiple outputs from these models are then integrated into the decoder to determine the final enhanced speech. Experimental results show that DAEME is superior to several baseline models in terms of objective evaluation metrics, automatic speech recognition results, and quality in subjective human listening tests.



rate research

Read More

For speech-related applications in IoT environments, identifying effective methods to handle interference noises and compress the amount of data in transmissions is essential to achieve high-quality services. In this study, we propose a novel multi-input multi-output speech compression and enhancement (MIMO-SCE) system based on a convolutional denoising autoencoder (CDAE) model to simultaneously improve speech quality and reduce the dimensions of transmission data. Compared with conventional single-channel and multi-input single-output systems, MIMO systems can be employed in applications that handle multiple acoustic signals need to be handled. We investigated two CDAE models, a fully convolutional network (FCN) and a Sinc FCN, as the core models in MIMO systems. The experimental results confirm that the proposed MIMO-SCE framework effectively improves speech quality and intelligibility while reducing the amount of recording data by a factor of 7 for transmission.
We propose to implement speech enhancement by the regeneration of clean speech from a salient representation extracted from the noisy signal. The network that extracts salient features is trained using a set of weight-sharing clones of the extractor network. The clones receive mel-frequency spectra of different noi
Performance of learning based Automatic Speech Recognition (ASR) is susceptible to noise, especially when it is introduced in the testing data while not presented in the training data. This work focuses on a feature enhancement for noise robust end-to-end ASR system by introducing a novel variant of denoising autoencoder (DAE). The proposed method uses skip connections in both encoder and decoder sides by passing speech information of the target frame from input to the model. It also uses a new objective function in training model that uses a correlation distance measure in penalty terms by measuring dependency of the latent target features and the model (latent features and enhanced features obtained from the DAE). Performance of the proposed method was compared against a conventional model and a state of the art model under both seen and unseen noisy environments of 7 different types of background noise with different SNR levels (0, 5, 10 and 20 dB). The proposed method also is tested using linear and non-linear penalty terms as well, where, they both show an improvement on the overall average WER under noisy conditions both seen and unseen in comparison to the state-of-the-art model.
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic speech recognition (ASR) system. If the target is to minimize the recognition error, the recognition results should be used to design the objective function for optimizing the SE model. However, the structure of an ASR system, which consists of multiple units, such as acoustic and language models, is usually complex and not differentiable. In this study, we proposed to adopt the reinforcement learning algorithm to optimize the SE model based on the recognition results. We evaluated the propsoed SE system on the Mandarin Chinese broadcast news corpus (MATBN). Experimental results demonstrate that the proposed method can effectively improve the ASR results with a notable 12.40% and 19.23% error rate reductions for signal to noise ratio at 0 dB and 5 dB conditions, respectively.
In this study, we propose an encoder-decoder structured system with fully convolutional networks to implement voice activity detection (VAD) directly on the time-domain waveform. The proposed system processes the input waveform to identify its segments to be either speech or non-speech. This novel waveform-based VAD algorithm, with a short-hand notation WVAD, has two main particularities. First, as compared to most conventional VAD systems that use spectral features, raw-waveforms employed in WVAD contain more comprehensive information and thus are supposed to facilitate more accurate speech/non-speech predictions. Second, based on the multi-branched architecture, WVAD can be extended by using an ensemble of encoders, referred to as WEVAD, that incorporate multiple attribute information in utterances, and thus can yield better VAD performance for specified acoustic conditions. We evaluated the presented WVAD and WEVAD for the VAD task in two datasets: First, the experiments conducted on AURORA2 reveal that WVAD outperforms many state-of-the-art VAD algorithms. Next, the TMHINT task confirms that through combining multiple attributes in utterances, WEVAD behaves even better than WVAD.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا