No Arabic abstract
In this article we show that, in a two-arm interferometer, pure quantum states of perfect path distinguishability (particles) are geometrically equidistant from all states with constant path distinguishability D. This property is not shared by other states, such as perfect fringe-visibility (waves) or maximally entangled quantum states (entanglon). Indeed, the Bures distance between a particle and any other state depends only the distinguishability of the latter. On the contrary, the Bures distance between a wave or an entanglon, and any other single photon state depends on other set of parameters.
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in preferred bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence induced by the free evolution dynamics on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.
Entanglement swapping has played an important role in quantum information processing, and become one of the necessary core technologies in the future quantum network. In this paper, we study entanglement swapping for multi-particle pure states and maximally entangled states in qudit systems. We generalize the entanglement swapping of two pure states from the case where each quantum system contains two particles to the case of containing any number of particles, and consider the entanglement swapping between any number of systems. We also generalize the entanglement swapping chain of bipartite pure states to the one of multi-particle pure states. In addition, we consider the entanglement swapping chains for maximally entangled states.
We prove that the bipartite entangled state of rank three is distillable. So there is no rank three bipartite bound entangled state. By using this fact, We present some families of rank four states that are distillable. We also analyze the relation between the low rank state and the Werner state.
From a practical perspective it is advantageous to develop experimental methods that verify entanglement in quantum states with as few measurements as possible. In this paper we investigate the minimal number of measurements needed to detect bound entanglement in bipartite $(dtimes d)$-dimensional states, i.e. entangled states that are positive under partial transposition. In particular, we show that a class of entanglement witnesses composed of mutually unbiased bases (MUBs) can detect bound entanglement if the number of measurements is greater than $d/2+1$. This is a substantial improvement over other detection methods, requiring significantly fewer resources than either full quantum state tomography or measuring a complete set of $d+1$ MUBs. Our approach is based on a partial characterisation of the (non-)decomposability of entanglement witnesses. We show that non-decomposability is a universal property of MUBs, which holds regardless of the choice of complementary observables, and we find that both the number of measurements and the structure of the witness play an important role in the detection of bound entanglement.
Complementarity between one- and two-particle visibility in discrete systems can be extended to bipartite quantum-entangled Gaussian states. The meaning of the two-particle visibility originally defined by Jaeger, Horne, Shimony, and Vaidman with the use of an indirect method that first corrects the two-particle probability distribution by adding and subtracting other distributions with varying degree of entanglement, however, deserves further analysis. Furthermore, the origin of complementarity between one-particle visibility and two-particle visibility is somewhat elusive and it is not entirely clear what is the best way to associate particular two-particle quantum observables with the two-particle visibility. Here, we develop a direct method for quantifying the two-particle visibility based on measurement of a pair of two-particle observables that are compatible with the measured pair of single-particle observables. For each of the two-particle observables the corresponding visibility is computed, after which the absolute difference of the latter pair of visibilities is considered as a redefinition of the two-particle visibility. Our approach reveals a mathematical symmetry as it treats the two pairs of one-particle or two-particle observables on equal footing by formally identifying all four observable distributions as rotated marginal distributions of the original two-particle probability distribution. The complementarity relation between one-particle visibility and two-particle visibility obtained with the direct method is exact in the limit of infinite Gaussian precision where the entangled Gaussian state approaches an ideal EPR state. The presented results demonstrate the theoretical utility of rotated marginal distributions for elucidating the nature of two-particle visibility and provide tools for the development of quantum applications employing continuous variables.