Do you want to publish a course? Click here

Exploiting Event Cameras for Spatio-Temporal Prediction of Fast-Changing Trajectories

85   0   0.0 ( 0 )
 Added by Marco Monforte
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper investigates trajectory prediction for robotics, to improve the interaction of robots with moving targets, such as catching a bouncing ball. Unexpected, highly-non-linear trajectories cannot easily be predicted with regression-based fitting procedures, therefore we apply state of the art machine learning, specifically based on Long-Short Term Memory (LSTM) architectures. In addition, fast moving targets are better sensed using event cameras, which produce an asynchronous output triggered by spatial change, rather than at fixed temporal intervals as with traditional cameras. We investigate how LSTM models can be adapted for event camera data, and in particular look at the benefit of using asynchronously sampled data.



rate research

Read More

218 - Cunjun Yu , Xiao Ma , Jiawei Ren 2020
Understanding crowd motion dynamics is critical to real-world applications, e.g., surveillance systems and autonomous driving. This is challenging because it requires effectively modeling the socially aware crowd spatial interaction and complex temporal dependencies. We believe attention is the most important factor for trajectory prediction. In this paper, we present STAR, a Spatio-Temporal grAph tRansformer framework, which tackles trajectory prediction by only attention mechanisms. STAR models intra-graph crowd interaction by TGConv, a novel Transformer-based graph convolution mechanism. The inter-graph temporal dependencies are modeled by separate temporal Transformers. STAR captures complex spatio-temporal interactions by interleaving between spatial and temporal Transformers. To calibrate the temporal prediction for the long-lasting effect of disappeared pedestrians, we introduce a read-writable external memory module, consistently being updated by the temporal Transformer. We show that with only attention mechanism, STAR achieves state-of-the-art performance on 5 commonly used real-world pedestrian prediction datasets.
Pedestrian intention recognition is very important to develop robust and safe autonomous driving (AD) and advanced driver assistance systems (ADAS) functionalities for urban driving. In this work, we develop an end-to-end pedestrian intention framework that performs well on day- and night- time scenarios. Our framework relies on objection detection bounding boxes combined with skeletal features of human pose. We study early, late, and combined (early and late) fusion mechanisms to exploit the skeletal features and reduce false positives as well to improve the intention prediction performance. The early fusion mechanism results in AP of 0.89 and precision/recall of 0.79/0.89 for pedestrian intention classification. Furthermore, we propose three new metrics to properly evaluate the pedestrian intention systems. Under these new evaluation metrics for the intention prediction, the proposed end-to-end network offers accurate pedestrian intention up to half a second ahead of the actual risky maneuver.
Deep convolutional neural networks (CNNs) have shown outstanding performance in the task of semantically segmenting images. Applying the same methods on 3D data still poses challenges due to the heavy memory requirements and the lack of structured data. Here, we propose LatticeNet, a novel approach for 3D semantic segmentation, which takes raw point clouds as input. A PointNet describes the local geometry which we embed into a sparse permutohedral lattice. The lattice allows for fast convolutions while keeping a low memory footprint. Further, we introduce DeformSlice, a novel learned data-dependent interpolation for projecting lattice features back onto the point cloud. We present results of 3D segmentation on multiple datasets where our method achieves state-of-the-art performance. We also extend and evaluate our network for instance and dynamic object segmentation.
Forecasting future traffic flows from previous ones is a challenging problem because of their complex and dynamic nature of spatio-temporal structures. Most existing graph-based CNNs attempt to capture the static relations while largely neglecting the dynamics underlying sequential data. In this paper, we present dynamic spatio-temporal graph-based CNNs (DST-GCNNs) by learning expressive features to represent spatio-temporal structures and predict future traffic flows from surveillance video data. In particular, DST-GCNN is a two stream network. In the flow prediction stream, we present a novel graph-based spatio-temporal convolutional layer to extract features from a graph representation of traffic flows. Then several such layers are stacked together to predict future flows over time. Meanwhile, the relations between traffic flows in the graph are often time variant as the traffic condition changes over time. To capture the graph dynamics, we use the graph prediction stream to predict the dynamic graph structures, and the predicted structures are fed into the flow prediction stream. Experiments on real datasets demonstrate that the proposed model achieves competitive performances compared with the other state-of-the-art methods.
In this paper, we propose a novel Transformer-based architecture for the task of generative modelling of 3D human motion. Previous works commonly rely on RNN-based models considering shorter forecast horizons reaching a stationary and often implausible state quickly. Instead, our focus lies on the generation of plausible future developments over longer time horizons. To mitigate the issue of convergence to a static pose, we propose a novel architecture that leverages the recently proposed self-attention concept. The task of 3D motion prediction is inherently spatio-temporal and thus the proposed model learns high dimensional embeddings for skeletal joints followed by a decoupled temporal and spatial self-attention mechanism. This allows the model to access past information directly and to capture spatio-temporal dependencies explicitly. We show empirically that this reduces error accumulation over time and allows for the generation of perceptually plausible motion sequences over long time horizons up to 20 seconds as well as accurate short-term predictions. Accompanying video available at https://youtu.be/yF0cdt2yCNE.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا