No Arabic abstract
In this paper, we propose a novel Transformer-based architecture for the task of generative modelling of 3D human motion. Previous works commonly rely on RNN-based models considering shorter forecast horizons reaching a stationary and often implausible state quickly. Instead, our focus lies on the generation of plausible future developments over longer time horizons. To mitigate the issue of convergence to a static pose, we propose a novel architecture that leverages the recently proposed self-attention concept. The task of 3D motion prediction is inherently spatio-temporal and thus the proposed model learns high dimensional embeddings for skeletal joints followed by a decoupled temporal and spatial self-attention mechanism. This allows the model to access past information directly and to capture spatio-temporal dependencies explicitly. We show empirically that this reduces error accumulation over time and allows for the generation of perceptually plausible motion sequences over long time horizons up to 20 seconds as well as accurate short-term predictions. Accompanying video available at https://youtu.be/yF0cdt2yCNE.
Human motion prediction is an increasingly interesting topic in computer vision and robotics. In this paper, we propose a new 2D CNN based network, TrajectoryNet, to predict future poses in the trajectory space. Compared with most existing methods, our model focuses on modeling the motion dynamics with coupled spatio-temporal features, local-global spatial features and global temporal co-occurrence features of the previous pose sequence. Specifically, the coupled spatio-temporal features describe the spatial and temporal structure information hidden in the natural human motion sequence, which can be mined by covering the space and time dimensions of the input pose sequence with the convolutional filters. The local-global spatial features that encode different correlations of different joints of the human body (e.g. strong correlations between joints of one limb, weak correlations between joints of different limbs) are captured hierarchically by enlarging the receptive field layer by layer and residual connections from the lower layers to the deeper layers in our proposed convolutional network. And the global temporal co-occurrence features represent the co-occurrence relationship that different subsequences in a complex motion sequence are appeared simultaneously, which can be obtained automatically with our proposed TrajectoryNet by reorganizing the temporal information as the depth dimension of the input tensor. Finally, future poses are approximated based on the captured motion dynamics features. Extensive experiments show that our method achieves state-of-the-art performance on three challenging benchmarks (e.g. Human3.6M, G3D, and FNTU), which demonstrates the effectiveness of our proposed method. The code will be available if the paper is accepted.
We propose a multiscale spatio-temporal graph neural network (MST-GNN) to predict the future 3D skeleton-based human poses in an action-category-agnostic manner. The core of MST-GNN is a multiscale spatio-temporal graph that explicitly models the relations in motions at various spatial and temporal scales. Different from many previous hierarchical structures, our multiscale spatio-temporal graph is built in a data-adaptive fashion, which captures nonphysical, yet motion-based relations. The key module of MST-GNN is a multiscale spatio-temporal graph computational unit (MST-GCU) based on the trainable graph structure. MST-GCU embeds underlying features at individual scales and then fuses features across scales to obtain a comprehensive representation. The overall architecture of MST-GNN follows an encoder-decoder framework, where the encoder consists of a sequence of MST-GCUs to learn the spatial and temporal features of motions, and the decoder uses a graph-based attention gate recurrent unit (GA-GRU) to generate future poses. Extensive experiments are conducted to show that the proposed MST-GNN outperforms state-of-the-art methods in both short and long-term motion prediction on the datasets of Human 3.6M, CMU Mocap and 3DPW, where MST-GNN outperforms previous works by 5.33% and 3.67% of mean angle errors in average for short-term and long-term prediction on Human 3.6M, and by 11.84% and 4.71% of mean angle errors for short-term and long-term prediction on CMU Mocap, and by 1.13% of mean angle errors on 3DPW in average, respectively. We further investigate the learned multiscale graphs for interpretability.
Understanding crowd motion dynamics is critical to real-world applications, e.g., surveillance systems and autonomous driving. This is challenging because it requires effectively modeling the socially aware crowd spatial interaction and complex temporal dependencies. We believe attention is the most important factor for trajectory prediction. In this paper, we present STAR, a Spatio-Temporal grAph tRansformer framework, which tackles trajectory prediction by only attention mechanisms. STAR models intra-graph crowd interaction by TGConv, a novel Transformer-based graph convolution mechanism. The inter-graph temporal dependencies are modeled by separate temporal Transformers. STAR captures complex spatio-temporal interactions by interleaving between spatial and temporal Transformers. To calibrate the temporal prediction for the long-lasting effect of disappeared pedestrians, we introduce a read-writable external memory module, consistently being updated by the temporal Transformer. We show that with only attention mechanism, STAR achieves state-of-the-art performance on 5 commonly used real-world pedestrian prediction datasets.
Predicting the future paths of an agents neighbors accurately and in a timely manner is central to the autonomous applications for collision avoidance. Conventional approaches, e.g., LSTM-based models, take considerable computational costs in the prediction, especially for the long sequence prediction. To support more efficient and accurate trajectory predictions, we propose a novel CNN-based spatial-temporal graph framework GraphTCN, which models the spatial interactions as social graphs and captures the spatio-temporal interactions with a modified temporal convolutional network. In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window. Therefore, it can be executed in parallel for much higher efficiency, and meanwhile with accuracy comparable to best-performing approaches. Experimental results confirm that our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.
Human motion prediction is a challenging and important task in many computer vision application domains. Existing work only implicitly models the spatial structure of the human skeleton. In this paper, we propose a novel approach that decomposes the prediction into individual joints by means of a structured prediction layer that explicitly models the joint dependencies. This is implemented via a hierarchy of small-sized neural networks connected analogously to the kinematic chains in the human body as well as a joint-wise decomposition in the loss function. The proposed layer is agnostic to the underlying network and can be used with existing architectures for motion modelling. Prior work typically leverages the H3.6M dataset. We show that some state-of-the-art techniques do not perform well when trained and tested on AMASS, a recently released dataset 14 times the size of H3.6M. Our experiments indicate that the proposed layer increases the performance of motion forecasting irrespective of the base network, joint-angle representation, and prediction horizon. We furthermore show that the layer also improves motion predictions qualitatively. We make code and models publicly available at https://ait.ethz.ch/projects/2019/spl.