Do you want to publish a course? Click here

Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge

104   0   0.0 ( 0 )
 Added by Wenjin Zhao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The integration of diverse electronic phenomena, such as magnetism and nontrivial topology, into a single system is normally studied either by seeking materials that contain both ingredients, or by layered growth of contrasting materials. The ability to simply stack very different two dimensional (2D) van der Waals materials in intimate contact permits a different approach. Here we use this approach to couple the helical edges states in a 2D topological insulator, monolayer WTe2, to a 2D layered antiferromagnet, CrI3. We find that the edge conductance is sensitive to the magnetization state of the CrI3, and the coupling can be understood in terms of an exchange field from the nearest and next-nearest CrI3 layers that produces a gap in the helical edge. We also find that the nonlinear edge conductance depends on the magnetization of the nearest CrI3 layer relative to the current direction. At low temperatures this produces an extraordinarily large nonreciprocal current that is switched by changing the antiferromagnetic state of the CrI3.



rate research

Read More

Monolayer WTe2 is predicted to be a quantum spin Hall insulator (QSHI) and electron transport along its edges has been experimentally observed. However, the smoking gun of QSHI, spin momentum locking of the edge electrons, has not been experimentally demonstrated. We propose a model to establish the relationship between the anisotropic magnetoresistance (AMR) and spin orientation of the helical electrons in WTe2. Based on the predictions of the model, angular dependent magnetoresistance measurements were carried out. The experimental results fully supported the model and the spin orientation of the helical edge electrons was determined. Our results not only demonstrate that WTe2 is indeed a QSHI, but also suggest a convenient method to determine the spin orientation of other QSHIs.
Monolayer 1T-WTe2 is a quantum spin Hall insulator with a gapped bulk and gapless helical edge states persisting to temperatures around 100 K. Recent studies have revealed a topological-to-trivial phase transition as well the emergence of an unconventional, potentially topological superconducting state upon tuning the carrier concentration with gating. However, despite extensive studies, the effects of gating on the band structure and the helical edge states have not yet been established. In this work we present a combined low-temperature STM and first principles study of back-gated monolayer 1T-WTe2 films grown on graphene. Consistent with a quantum spin Hall system, the films show well-defined bulk gaps and clear edge states that span the gap. By directly measuring the density of states with STM spectroscopy, we show that the bulk band gap magnitude shows substantial changes with applied gate voltage, which is contrary to the naive expectation that a gate would rigidly shift the bands relative to the Fermi level. To explain our data, we carry out density functional theory and model Hamiltonian calculations which show that a gate electric field causes doping and inversion symmetry breaking which polarizes and spin-splits the bulk bands. Interestingly, the calculated spin splitting from the effective Rashba-like spin-orbit coupling can be in the tens of meV for the electric fields in the experiment, which may be useful for spintronics applications. Our work reveals the strong effect of electric fields on the bulk band structure of monolayer 1T-WTe2, which will play a critical role in our understanding of gate-induced phenomena in this system.
A two-dimensional (2D) topological insulator (TI) exhibits the quantum spin Hall (QSH) effect, in which topologically protected spin-polarized conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported for the first time in an atomically thin material, monolayer WTe2. Electrical transport measurements on exfoliated samples and scanning tunneling spectroscopy on epitaxially grown monolayer islands signal the existence of edge modes with conductance approaching the quantized value. Here, we directly image the local conductivity of monolayer WTe2 devices using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, ruling out trivial conduction due to band bending or in-gap states, and is suppressed by magnetic field as expected. Interestingly, we observe additional conducting lines and rings within most samples which can be explained by edge states following boundaries between topologically trivial and non-trivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe2 or other air-sensitive 2D materials. At the same time, they reveal the robustness of the QSH channels and the potential to engineer and pattern them by chemical or mechanical means in the monolayer material platform.
The quantum spin Hall (QSH) state was recently demonstrated in monolayers of the transition metal dichalcogenide 1T-WTe$_2$ and is characterized by a band gap in the two-dimensional (2D) interior and helical one-dimensional (1D) edge states. Inducing superconductivity in the helical edge states would result in a 1D topological superconductor, a highly sought-after state of matter. In the present study, we use a novel dry-transfer flip technique to place atomically-thin layers of WTe$_2$ on a van der Waals superconductor, NbSe$_2$. Using scanning tunneling microscopy and spectroscopy (STM/STS), we demonstrate atomically clean surfaces and interfaces and the presence of a proximity-induced superconducting gap in the WTe$_2$ for thicknesses from a monolayer up to 7 crystalline layers. At the edge of the WTe$_2$ monolayer, we show that the superconducting gap coexists with the characteristic spectroscopic signature of the QSH edge state. Taken together, these observations provide conclusive evidence for proximity-induced superconductivity in the QSH edge state in WTe$_2$, a crucial step towards realizing 1D topological superconductivity and Majorana bound states in this van der Waals material platform.
Magnetic impurities with sufficient anisotropy could account for the observed strong deviation of the edge conductance of 2D topological insulators from the anticipated quantized value. In this work we consider such a helical edge coupled to dilute impurities with an arbitrary spin $S$ and a general form of the exchange matrix. We calculate the backscattering current noise at finite frequencies as a function of the temperature and applied voltage bias. We find that in addition to the Lorentzian resonance at zero frequency, the backscattering current noise features Fano-type resonances at non-zero frequencies. The widths of the resonances are controlled by the spectrum of corresponding Korringa rates. At a fixed frequency the backscattering current noise has non-monotonic behaviour as a function of the bias voltage.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا