Do you want to publish a course? Click here

Emergence of Superconductivity in Doped Multiorbital Hubbard Chains

169   0   0.0 ( 0 )
 Added by Niravkumar Patel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a variational state for one-dimensional two-orbital Hubbard models that intuitively explains the recent computational discovery of pairing in these systems when hole doped. Our Ansatz is an optimized linear superposition of Affleck-Kennedy-Lieb-Tasaki valence bond states, rendering the combination a valence bond liquid dubbed Orbital Resonant Valence Bond. We show that the undoped (one electron/orbital) quantum state of two sites coupled into a global spin singlet is exactly written employing only spin-1/2 singlets linking orbitals at nearest-neighbor sites. Generalizing to longer chains defines our variational state visualized geometrically expressing our chain as a two-leg ladder, with one orbital per leg. As in Andersons resonating valence-bond state, our undoped variational state contains preformed singlet pairs that via doping become mobile leading to superconductivity. Doped real materials with one-dimensional substructures, two near-degenerate orbitals, and intermediate Hubbard U/W strengths -- W the carriers bandwidth -- could realize spin-singlet pairing if on-site anisotropies are small. If these anisotropies are robust, spin-triplet pairing emerges.



rate research

Read More

335 - T. Shirakawa , S. Nishimoto , 2008
We study the ground-state properties of the double-chain Hubbard model coupled with ferromagnetic exchange interaction by using the weak-coupling theory, density-matrix renormalization group technique, and Lanczos exact-diagonalization method. We determine the ground-state phase diagram in the parameter space of the ferromagnetic exchange interaction and band filling. We find that, in high electron density regime, the spin gap opens and the spin-singlet $d_{xy}$-wave-like pairing correlation is most dominant, whereas in low electron density regime, the fully-polarized ferromagnetic state is stabilized where the spin-triplet $p_{y}$-wave-like pairing correlation is most dominant.
The dualism between superconductivity and charge/spin modulations (the so-called stripes) dominates the phase diagram of many strongly-correlated systems. A prominent example is given by the Hubbard model, where these phases compete and possibly coexist in a wide regime of electron dopings for both weak and strong couplings. Here, we investigate this antagonism within a variational approach that is based upon Jastrow-Slater wave functions, including backflow correlations, which can be treated within a quantum Monte Carlo procedure. We focus on clusters having a ladder geometry with $M$ legs (with $M$ ranging from $2$ to $10$) and a relatively large number of rungs, thus allowing us a detailed analysis in terms of the stripe length. We find that stripe order with periodicity $lambda=8$ in the charge and $2lambda=16$ in the spin can be stabilized at doping $delta=1/8$. Here, there are no sizable superconducting correlations and the ground state has an insulating character. A similar situation, with $lambda=6$, appears at $delta=1/6$. Instead, for smaller values of dopings, stripes can be still stabilized, but they are weakly metallic at $delta=1/12$ and metallic with strong superconducting correlations at $delta=1/10$, as well as for intermediate (incommensurate) dopings. Remarkably, we observe that spin modulation plays a major role in stripe formation, since it is crucial to obtain a stable striped state upon optimization. The relevance of our calculations for previous density-matrix renormalization group results and for the two-dimensional case is also discussed.
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle spectrum for the doped Hubbard model using cluster perturbation theory on superclusters. Starting from extremely low doping, we identify a heavily renormalized quasiparticle dispersion that immediately develops across the Fermi level, and a weakening polaronic side band at higher binding energy. The quasiparticle spectral weight roughly grows at twice the rate of doping in the low doping regime, but this rate is halved at optimal doping. In the heavily doped regime, we find both strong electron-hole asymmetry and a persistent presence of Mott spectral features. Finally, we discuss the applicability of the single-band Hubbard model to describe the evolution of nodal spectra measured by angle-resolved photoemission spectroscopy (ARPES) on the single-layer cuprate La$_{2-x}$Sr$_x$CuO$_4$ ($0 le x le 0.15$). This work benchmarks the predictive power of the Hubbard model for electronic properties of high-$T_c$ cuprates.
Hubbard ladders are an important stepping stone to the physics of the two-dimensional Hubbard model. While many of their properties are accessible to numerical and analytical techniques, the question of whether weakly hole-doped Hubbard ladders are dominated by superconducting or charge-density-wave correlations has so far eluded a definitive answer. In particular, previous numerical simulations of Hubbard ladders have seen a much faster decay of superconducting correlations than expected based on analytical arguments. We revisit this question using a state-of-the-art implementation of the density matrix renormalization group algorithm that allows us to simulate larger system sizes with higher accuracy than before. Performing careful extrapolations of the results, we obtain improved estimates for the Luttinger liquid parameter and the correlation functions at long distances. Our results confirm that, as suggested by analytical considerations, superconducting correlations become dominant in the limit of very small doping.
We develop an efficient approach for computing two-particle response functions and interaction vertices for multiorbital strongly correlated systems based on fluctuation around rotationally-invariant slave-boson saddle-point. The method is applied to the degenerate three-orbital Hubbard-Kanamori model for investigating the origin of the s-wave orbital antisymmetric spin-triplet superconductivity in the Hunds metal regime, previously found in the dynamical mean-field theory studies. By computing the pairing interaction considering the particle-particle and the particle-hole scattering channels, we identify the mechanism leading to the pairing instability around Hunds metal crossover arises from the particle-particle channel, containing the local electron pair fluctuation between different particle-number sectors of the atomic Hilbert space. On the other hand, the particle-hole spin fluctuations induce the s-wave pairing instability before entering the Hunds regime. Our approach paves the way for investigating the pairing mechanism in realistic correlated materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا