Do you want to publish a course? Click here

Complexes of graphs with bounded independence number

186   0   0.0 ( 0 )
 Added by Alan Lew
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Let $G=(V,E)$ be a graph and $n$ a positive integer. Let $I_n(G)$ be the abstract simplicial complex whose simplices are the subsets of $V$ that do not contain an independent set of size $n$ in $G$. We study the collapsibility numbers of the complexes $I_n(G)$ for various classes of graphs, focusing on the class of graphs with maximum degree bounded by $Delta$. As an application, we obtain the following result: Let $G$ be a claw-free graph with maximum degree at most $Delta$. Then, every collection of $leftlfloorleft(frac{Delta}{2}+1right)(n-1)rightrfloor+1$ independent sets in $G$ has a rainbow independent set of size $n$.



rate research

Read More

Given a graph $G$ on the vertex set $V$, the {em non-matching complex} of $G$, $NM_k(G)$, is the family of subgraphs $G subset G$ whose matching number $ u(G)$ is strictly less than $k$. As an attempt to generalize the result by Linusson, Shareshian and Welker on the homotopy types of $NM_k(K_n)$ and $NM_k(K_{r,s})$ to arbitrary graphs $G$, we show that (i) $NM_k(G)$ is $(3k-3)$-Leray, and (ii) if $G$ is bipartite, then $NM_k(G)$ is $(2k-2)$-Leray. This result is obtained by analyzing the homology of the links of non-empty faces of the complex $NM_k(G)$, which vanishes in all dimensions $dgeq 3k-4$, and all dimensions $d geq 2k-3$ when $G$ is bipartite. As a corollary, we have the following rainbow matching theorem which generalizes the result by Aharoni et. al. and Driskos theorem: Let $E_1, dots, E_{3k-2}$ be non-empty edge subsets of a graph and suppose that $ u(E_icup E_j)geq k$ for every $i e j$. Then $E=bigcup E_i$ has a rainbow matching of size $k$. Furthermore, the number of edge sets $E_i$ can be reduced to $2k-1$ when $E$ is the edge set of a bipartite graph.
Given a digraph $D$ with $m$ arcs and a bijection $tau: A(D)rightarrow {1, 2, ldots, m}$, we say $(D, tau)$ is an antimagic orientation of a graph $G$ if $D$ is an orientation of $G$ and no two vertices in $D$ have the same vertex-sum under $tau$, where the vertex-sum of a vertex $u$ in $D$ under $tau$ is the sum of labels of all arcs entering $u$ minus the sum of labels of all arcs leaving $u$. Hefetz, M{u}tze, and Schwartz in 2010 initiated the study of antimagic orientations of graphs, and conjectured that every connected graph admits an antimagic orientation. This conjecture seems hard, and few related results are known. However, it has been verified to be true for regular graphs, biregular bipartite graphs, and graphs with large maximum degree. In this paper, we establish more evidence for the aforementioned conjecture by studying antimagic orientations of graphs $G$ with independence number at least $|V(G)|/2$ or at most four. We obtain several results. The method we develop in this paper may shed some light on attacking the aforementioned conjecture.
Given a simple undirected graph $G$ there is a simplicial complex $mathrm{Ind}(G)$, called the independence complex, whose faces correspond to the independent sets of $G$. This is a well studied concept because it provides a fertile ground for interactions between commutative algebra, graph theory and algebraic topology. One of the line of research pursued by many authors is to determine the graph classes for which the associated independence complex is Cohen-Macaulay. For example, it is known that when $G$ is a chordal graph the complex $mathrm{Ind}(G)$ is in fact vertex decomposable, the strongest condition in the Cohen-Macaulay ladder. In this article we consider a generalization of independence complex. Given $rgeq 1$, a subset of the vertex set is called $r$-independent if the connected components of the induced subgraph have cardinality at most $r$. The collection of all $r$-independent subsets of $G$ form a simplicial complex called the $r$-independence complex and is denoted by $mathrm{Ind}_r(G)$. It is known that when $G$ is a chordal graph the complex $mathrm{Ind}_r(G)$ has the homotopy type of a wedge of spheres. Hence it is natural to ask which of these complexes are shellable or even vertex decomposable. We prove, using Woodroofes chordal hypergraph notion, that these complexes are always shellable when the underlying chordal graph is a tree. Further, using the notion of vertex splittable ideals we show that for caterpillar graphs the associated $r$-independence complex is vertex decomposable for all values of $r$. We also construct chordal graphs on $2r+2$ vertices such that their $r$-independence complexes are not sequentially Cohen-Macaulay for any $r ge 2$.
Let $G$ be a simple graph with maximum degree $Delta(G)$ and chromatic index $chi(G)$. A classic result of Vizing indicates that either $chi(G )=Delta(G)$ or $chi(G )=Delta(G)+1$. The graph $G$ is called $Delta$-critical if $G$ is connected, $chi(G )=Delta(G)+1$ and for any $ein E(G)$, $chi(G-e)=Delta(G)$. Let $G$ be an $n$-vertex $Delta$-critical graph. Vizing conjectured that $alpha(G)$, the independence number of $G$, is at most $frac{n}{2}$. The current best result on this conjecture, shown by Woodall, is that $alpha(G)<frac{3n}{5}$. We show that for any given $varepsilonin (0,1)$, there exist positive constants $d_0(varepsilon)$ and $D_0(varepsilon)$ such that if $G$ is an $n$-vertex $Delta$-critical graph with minimum degree at least $d_0$ and maximum degree at least $D_0$, then $alpha(G)<(frac{{1}}{2}+varepsilon)n$. In particular, we show that if $G$ is an $n$-vertex $Delta$-critical graph with minimum degree at least $d$ and $Delta(G)ge (d+2)^{5d+10}$, then [ alpha(G) < left. begin{cases} frac{7n}{12}, & text{if $d= 3$; } frac{4n}{7}, & text{if $d= 4$; } frac{d+2+sqrt[3]{(d-1)d}}{2d+4+sqrt[3]{(d-1)d}}n<frac{4n}{7}, & text{if $dge 19$. } end{cases} right. ]
We focus on counting the number of labeled graphs on $n$ vertices and treewidth at most $k$ (or equivalently, the number of labeled partial $k$-trees), which we denote by $T_{n,k}$. So far, only the particular cases $T_{n,1}$ and $T_{n,2}$ had been studied. We show that $$ left(c cdot frac{kcdot 2^k cdot n}{log k} right)^n cdot 2^{-frac{k(k+3)}{2}} cdot k^{-2k-2} leq T_{n,k} leq left(k cdot 2^k cdot nright)^n cdot 2^{-frac{k(k+1)}{2}} cdot k^{-k}, $$ for $k > 1$ and some explicit absolute constant $c > 0$. The upper bound is an immediate consequence of the well-known number of labeled $k$-trees, while the lower bound is obtained from an explicit algorithmic construction. It follows from this construction that both bounds also apply to graphs of pathwidth and proper-pathwidth at most $k$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا