Do you want to publish a course? Click here

Coherent control of 40-THz optical phonons in diamond using femtosecond optical pulses

57   0   0.0 ( 0 )
 Added by Tetsuya Kimata
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coherent control is an optical technique to manipulate quantum states of matter. The coherent control of 40-THz optical phonons in diamond was demonstrated by using a pair of sub-10-fs optical pulses. The optical phonons were detected via transient transmittance using a pump and probe protocol. The optical and phonon interferences were observed in the transient transmittance change and its behavior was well reproduced by quantum mechanical calculations with a simple model which consists of two electronic levels and shifted harmonic oscillators.



rate research

Read More

We demonstrate the ability to control quantum coherent Rabi-oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) by shaping the light pulses that trigger them. The experiments described here show that when the excitation is resonant with the short wavelength slope of the SOA gain spectrum, a linear frequency chirp affects its ability to trigger Rabi-oscillations within the SOA: A negative chirp inhibits Rabi-oscillations whereas a positive chirp can enhance them, relative to the interaction of a transform limited pulse. The experiments are confirmed by a numerical calculation that models the propagation of the experimentally shaped pulses through the SOA.
Although diamond photonics has driven considerable interest and useful applications, as shown in frequency generation devices and single photon emitters, fundamental studies on the third-order optical nonlinearities of diamond are still scarce, stalling the development of an integrated platform for nonlinear and quantum optics. The purpose of this paper is to contribute to those studies by measuring the spectra of two-photon absorption coefficient ($beta$) and the nonlinear index of refraction (n$_2$) of diamond using femtosecond laser pulses, in a wide spectral range. These measurements show the magnitude of $beta$ increasing from 0.07 to 0.23 cm/GW, as it approaches the bandgap energy, in the region from 3.18 to 4.77 eV (390 - 260 nm), whereas the n$_2$ varies from zero to 1.7E-19 m$^2$/W in the full measured range, from 0.83 - 4.77 eV (1500 - 260 nm). The experimental results are compared with theoretical models for nonlinear absorption and refraction in indirect gap semiconductors, indicating the two-photon absorption as the dominant effect in the dispersion of the third-order nonlinear susceptibility. These data, together with optical Kerr gate measurements, also provided here, are of foremost relevance to the understanding of ultrafast optical processes in diamond and its nonlinear properties.
Singly ionized nitrogen molecules in ambient air pumped by near-infrared femtosecond laser give rise to superradiant emission. Here we demonstrate coherent control of this superradiance by injecting a pair of resonant seeding pulses inside the nitrogen gas plasma. Strong modulation of the 391.4 nm superradiance with a period of 1.3 fs is observed when the delay between the two seeding pulses are finely tuned, pinpointing the essential role of macroscopic coherence in this lasing process. Based on this time-resolved method, the complex temporal evolution of the macroscopic coherence between two involved energy levels has been experimentally revealed, which is found to last for around 10 picoseconds in the low gas pressure range. These observations provide a new level of control on the air lasing based on nitrogen ions, which can find potential applications in optical remote sensing.
All-optical switching of 77 fs pulses centered at 1560 nm, driven by 270 fs, 1030 nm pulses in a dual-core optical fiber exhibiting high index contrast is presented. The fiber is made of a thermally matched pair of lead silicate and borosilicate glasses used as core and cladding material, respectively. The novel switching approach is based on nonlinear balancing of dual-core asymmetry, by control pulse intensity induced group velocity reduction of the fast fiber channel. Due to the fiber core made of soft glass with high nonlinearity high switching contrast exceeding 20 dB is attained under application of control pulses of only few nanojoule energy. The optimization of the fiber length brought the best results at 14 mm, which is in good correspondence with the calculated coupling length at the signal wavelength. The results express significant progress in comparison to similar studies based on self-switching of solitonic pulses in dual-core fibers and represent high application potential.
When an atom strongly couples to a cavity, it can undergo coherent vacuum Rabi oscillations. Controlling these oscillatory dynamics quickly relative to the vacuum Rabi frequency enables remarkable capabilities such as Fock state generation and deterministic synthesis of quantum states of light, as demonstrated using microwave frequency devices. At optical frequencies, however, dynamical control of single-atom vacuum Rabi oscillations remains challenging. Here, we demonstrate coherent transfer of optical frequency excitation between a single quantum dot and a cavity by controlling vacuum Rabi oscillations. We utilize a photonic molecule to simultaneously attain strong coupling and a cavity-enhanced AC Stark shift. The Stark shift modulates the detuning between the two systems on picosecond timescales, faster than the vacuum Rabi frequency. We demonstrate the ability to add and remove excitation from the cavity, and perform coherent control of light-matter states. These results enable ultra-fast control of atom-cavity interactions in a nanophotonic device platform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا