Do you want to publish a course? Click here

Nonlinear optical spectrum of diamond at femtosecond regime

109   0   0.0 ( 0 )
 Added by Sergio R. Muniz
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although diamond photonics has driven considerable interest and useful applications, as shown in frequency generation devices and single photon emitters, fundamental studies on the third-order optical nonlinearities of diamond are still scarce, stalling the development of an integrated platform for nonlinear and quantum optics. The purpose of this paper is to contribute to those studies by measuring the spectra of two-photon absorption coefficient ($beta$) and the nonlinear index of refraction (n$_2$) of diamond using femtosecond laser pulses, in a wide spectral range. These measurements show the magnitude of $beta$ increasing from 0.07 to 0.23 cm/GW, as it approaches the bandgap energy, in the region from 3.18 to 4.77 eV (390 - 260 nm), whereas the n$_2$ varies from zero to 1.7E-19 m$^2$/W in the full measured range, from 0.83 - 4.77 eV (1500 - 260 nm). The experimental results are compared with theoretical models for nonlinear absorption and refraction in indirect gap semiconductors, indicating the two-photon absorption as the dominant effect in the dispersion of the third-order nonlinear susceptibility. These data, together with optical Kerr gate measurements, also provided here, are of foremost relevance to the understanding of ultrafast optical processes in diamond and its nonlinear properties.



rate research

Read More

Coherent control is an optical technique to manipulate quantum states of matter. The coherent control of 40-THz optical phonons in diamond was demonstrated by using a pair of sub-10-fs optical pulses. The optical phonons were detected via transient transmittance using a pump and probe protocol. The optical and phonon interferences were observed in the transient transmittance change and its behavior was well reproduced by quantum mechanical calculations with a simple model which consists of two electronic levels and shifted harmonic oscillators.
Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as providing a technique for their optimization.
We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.
Femtosecond laser writing is applied to form Bragg grating waveguides in the diamond bulk. Type II waveguides are integrated with a single pulse point-by-point periodic laser modification positioned towards the edge of the waveguide core. These photonic devices, operating in the telecommunications band, allow for simultaneous optical waveguiding and narrowband reflection from a 4th order grating. This fabrication technology opens the way towards advanced 3D photonic networks in diamond for a range of applications.
Photon pairs and heralded single photons, obtained from cavity-assisted parametric down-conversion (PDC), play an important role in quantum communications and technology. This motivated a thorough study of the spectral and temporal properties of parametric light, both above the Optical Parametric Oscillator (OPO) threshold, where the semiclassical approach is justified, and deeply below it, where the linear cavity approximation is applicable. The pursuit of a higher two-photon emission rate leads into an interesting intermediate regime where the OPO still operates considerably below the threshold but the nonlinear cavity phenomena cannot be neglected anymore. Here, we investigate this intermediate regime and show that the spectral and temporal properties of the photon pairs, as well as their emission rate, may significantly differ from the widely accepted linear model. The observed phenomena include frequency pulling and broadening in the temporal correlation for the down-converted optical fields. These factors need to be taken into account when devising practical applications of the high-rate cavity-assisted SPDC sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا