Do you want to publish a course? Click here

Theoretical Study of Magnetoelectric Effects in Honeycomb Antiferromagnet Co4Nb2O9

134   0   0.0 ( 0 )
 Added by Masashige Matsumoto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The honeycomb antiferromagnet Co4Nb2O9 is known to exhibit an interesting magnetoelectric effect that the electric polarization rotates at the twice speed in the opposite direction relative to the rotation of the external magnetic field applied in the basal ab-plane. The spin-dependent electric dipole can be an origin of the magnetoelectric effect. It is described by the product of spin operators at different sites (type-I theory) or at the same site (type-II theory). We examine the electric polarization for the two cases on the basis of the symmetry analysis of the crystal structure of Co4Nb2O9, and conclude that the latter is the origin of the observed result. This paper also gives a general description of the field-induced electric polarization on honeycomb lattices with the C3 point group symmetry on the basis of the type-I theory.



rate research

Read More

Magnetoelectric effects in honeycomb antiferromagnet Co4Nb2O9 are investigated on the basis of symmetry analyses of Co ions in trigonal P-3c1 space group. For each Co ion, the possible spin dependence is classified by C3 point-group symmetry. This accounts for the observed main effect that an electric polarization rotates in the opposite direction at the twice speed relative to the rotation of the external magnetic field applied in the ab-plane. Inversion centers and twofold axes in the unit cell restrict the active spin-dependence of the electric polarization, which well explains the observed experimental results. Expected optical properties of quadrupolar excitation and various types of dichroism are also discussed.
The magnetic and magnetocaloric (MCE) properties were studied in a stuffed honeycomb antiferromagnet GdInO3 polycrystalline. No long-range magnetic ordering was observed with only a sharp upturn in the temperature dependent magnetization curves at TN ~ 2.1 K. The large value of frustration index value ~ 5.0 suggests short-range antiferromagnetic interactions existing between the Gd3+ moments in this frustrated magnetic system. Negligible thermal and magnetic hysteresis suggest a second-order feature of phase transition and a reversible magnetocaloric effect (MCE) in GdInO3 compound. In the magnetic field changes of 0-50 kOe and 0-70 kOe, the maximum magnetic entropy change values are 9.31 J/kg K and 17.53 J/kg K near the liquid helium temperature, with the corresponding RCP values of 106.61 and 196.38 J/kg, respectively. The relative lower MCE performance of GdInO3 polycrystalline than the other Gd-based magnetocaloric effect is understood by the high magnetic frustration in this system. Our investigation results reveal GdInO3 polycrystalline has a large reversible MCE, which not only provides another possibility of exploiting magnetocaloric refrigerants in the frustrated magnetic systems near the cryogenic temperature region, but also serves to excavate more exotic properties in the frustrated stuffed honeycomb magnetic systems.
Through analysis of single crystal neutron diffraction data, we present the magnetic structures of magnetoelectric Co4Nb2O9 under various magnetic fields. In zero-field, neutron diffraction experiments below TN=27 K reveal that the Co2+ moments order primarily along the a* direction without any spin canting along the c axis, manifested by the magnetic symmetry C2/c. The moments of nearest neighbor Co atoms order ferromagnetically with a small cant away from the next nearest neighbor Co moments along the c axis. In the applied magnetic field H//a, three magnetic domains were aligned with their major magnetic moments perpendicular to the magnetic field with no indication of magnetic phase transitions. The influences of magnetic fields on the magnetic structures associated with the observed magnetoelectric coupling are discussed.
98 - Lei Ding , Yan Wu , Minseong Lee 2020
By combining single crystal x-ray and neutron diffraction, and the magnetodielectric measurements on single crystal Fe4Nb2O9, we present the magnetic structure and the symmetry-allowed magnetoelectric coupling in Fe4Nb2O9. It undergoes an antiferromagnetic transition at TN=93 K, followed by a displacive transition at TS=70 K. The temperature-dependent dielectric constant of Fe4Nb2O9 is strongly anisotropic with the first anomaly at 93 K due to the exchange striction as a result of the long range spin order, and the second one at 70 K emanating from the structural phase transition primarily driven by the O atomic displacements. Magneticfield induced magnetoelectric coupling was observed in single crystal Fe4Nb2O9 and is compatible with the solved magnetic structure that is characteristic of antiferromagnetically arranged ferromagnetic chains in the honeycomb plane. We propose that such magnetic symmetry should be immune to external magnetic fields to some extent favored by the freedom of rotation of moments in the honeycomb plane, laying out a promising system to control the magnetoelectric properties by magnetic fields.
156 - Da Wang , Wan-Sheng Wang , 2015
Motivated by the recent discovery of high temperature antiferromagnet SrRu$_2$O$_6$ and its potential to be the parent of a new superconductor, we construct a minimal $t_{2g}$-orbital model on a honeycomb lattice to simulate its low energy band structure. Local Coulomb interaction is taken into account through both random phase approximation and mean field theory. Experimentally observed Antiferromagnetic order is obtained in both approximations. In addition, our theory predicts that the magnetic moments on three $t_{2g}$-orbitals are non-collinear as a result of the strong spin-orbit coupling of Ru atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا