No Arabic abstract
Software Defined Networking (SDN) is a network paradigm shift that facilitates comprehensive network programmability to cope with emerging new technologies such as cloud computing and big data. SDN facilitates simplified and centralized network management enabling it to operate in dynamic scenarios. Further, SDN uses the OpenFlow protocol for communication between the controller and its switches. The OpenFlow creates vulnerabilities for network attacks especially Distributed Denial of Service (DDoS). DDoS attacks are launched from the compromised hosts connected to the SDN switches. In this paper, we introduce a time- and space-efficient solution for the identification of these compromised hosts. Our solution consumes less computational resources and space and does not require any special equipment.
The current paper addresses relevant network security vulnerabilities introduced by network devices within the emerging paradigm of Internet of Things (IoT) as well as the urgent need to mitigate the negative effects of some types of Distributed Denial of Service (DDoS) attacks that try to explore those security weaknesses. We design and implement a Software-Defined Intrusion Detection System (IDS) that reactively impairs the attacks at its origin, ensuring the normal operation of the network infrastructure. Our proposal includes an IDS that automatically detects several DDoS attacks, and then as an attack is detected, it notifies a Software Defined Networking (SDN) controller. The current proposal also downloads some convenient traffic forwarding decisions from the SDN controller to network devices. The evaluation results suggest that our proposal timely detects several types of cyber-attacks based on DDoS, mitigates their negative impacts on the network performance, and ensures the correct data delivery of normal traffic. Our work sheds light on the programming relevance over an abstracted view of the network infrastructure to timely detect a Botnet exploitation, mitigate malicious traffic at its source, and protect benign traffic.
Cryptocurrencies have become very popular in recent years. Thousands of new cryptocurrencies have emerged, proposing new and novel techniques that improve on Bitcoins core innovation of the blockchain data structure and consensus mechanism. However, cryptocurrencies are a major target for cyber-attacks, as they can be sold on exchanges anonymously and most cryptocurrencies have their codebases publicly available. One particular issue is the prevalence of code clones in cryptocurrencies, which may amplify security threats. If a vulnerability is found in one cryptocurrency, it might be propagated into other cloned cryptocurrencies. In this work, we propose a systematic remedy to this problem, and we propose CoinWatch (CW). Given a reported vulnerability at the input, CW uses the code evolution analysis and a clone detection technique for indication of cryptocurrencies that might be vulnerable. We applied CW on 1094 cryptocurrencies using 4 CVEs and obtained 786 true vulnerabilities present in 384 projects, which were confirmed with developers and successfully reported as CVE extensions.
We experimentally demonstrate, for the first time, DDoS mitigation of QKD-based networks utilizing a software defined network application. Successful quantum-secured link allocation is achieved after a DDoS attack based on real-time monitoring of quantum parameters
A novel class of extreme link-flooding DDoS (Distributed Denial of Service) attacks is designed to cut off entire geographical areas such as cities and even countries from the Internet by simultaneously targeting a selected set of network links. The Crossfire attack is a target-area link-flooding attack, which is orchestrated in three complex phases. The attack uses a massively distributed large-scale botnet to generate low-rate benign traffic aiming to congest selected network links, so-called target links. The adoption of benign traffic, while simultaneously targeting multiple network links, makes detecting the Crossfire attack a serious challenge. In this paper, we present analytical and emulated results showing hitherto unidentified vulnerabilities in the execution of the attack, such as a correlation between coordination of the botnet traffic and the quality of the attack, and a correlation between the attack distribution and detectability of the attack. Additionally, we identified a warm-up period due to the bot synchronization. For attack detection, we report results of using two supervised machine learning approaches: Support Vector Machine (SVM) and Random Forest (RF) for classification of network traffic to normal and abnormal traffic, i.e, attack traffic. These machine learning models have been trained in various scenarios using the link volume as the main feature set.
In this paper, we shed new light on the DNS amplification ecosystem, by studying complementary data sources, bolstered by orthogonal methodologies. First, we introduce a passive attack detection method for the Internet core, i.e., at Internet eXchange Points (IXPs). Surprisingly, IXPs and honeypots observe mostly disjoint sets of attacks: 96% of IXP-inferred attacks were invisible to a sizable honeypot platform. Second, we assess the effectiveness of observed DNS attacks by studying IXP traces jointly with diverse data from independent measurement infrastructures. We find that attackers efficiently detect new reflectors and purposefully rotate between them. At the same time, we reveal that attackers are a small step removed from bringing about significantly higher amplification factors (14x). Third, we identify and fingerprint a major attack entity by studying patterns in attack traces. We show that this entity dominates the DNS amplification ecosystem by carrying out 59% of the attacks, and provide an in-depth analysis of its behavior over time. Finally, our results reveal that operators of various .gov names adhere to a DNSSEC key rollover scheme, which exacerbates amplification potential, and which we can verifiably connect to misuses and attacker decision-making.