Do you want to publish a course? Click here

SDN-Based Intrusion Detection System for Early Detection and Mitigation of DDoS Attacks

95   0   0.0 ( 0 )
 Added by Jose Moura
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The current paper addresses relevant network security vulnerabilities introduced by network devices within the emerging paradigm of Internet of Things (IoT) as well as the urgent need to mitigate the negative effects of some types of Distributed Denial of Service (DDoS) attacks that try to explore those security weaknesses. We design and implement a Software-Defined Intrusion Detection System (IDS) that reactively impairs the attacks at its origin, ensuring the normal operation of the network infrastructure. Our proposal includes an IDS that automatically detects several DDoS attacks, and then as an attack is detected, it notifies a Software Defined Networking (SDN) controller. The current proposal also downloads some convenient traffic forwarding decisions from the SDN controller to network devices. The evaluation results suggest that our proposal timely detects several types of cyber-attacks based on DDoS, mitigates their negative impacts on the network performance, and ensures the correct data delivery of normal traffic. Our work sheds light on the programming relevance over an abstracted view of the network infrastructure to timely detect a Botnet exploitation, mitigate malicious traffic at its source, and protect benign traffic.



rate research

Read More

Internet has played a vital role in this modern world, the possibilities and opportunities offered are limitless. Despite all the hype, Internet services are liable to intrusion attack that could tamper the confidentiality and integrity of important information. An attack started with gathering the information of the attack target, this gathering of information activity can be done as either fast or slow attack. The defensive measure network administrator can take to overcome this liability is by introducing Intrusion Detection Systems (IDSs) in their network. IDS have the capabilities to analyze the network traffic and recognize incoming and on-going intrusion. Unfortunately the combination of both modules in real time network traffic slowed down the detection process. In real time network, early detection of fast attack can prevent any further attack and reduce the unauthorized access on the targeted machine. The suitable set of feature selection and the correct threshold value, add an extra advantage for IDS to detect anomalies in the network. Therefore this paper discusses a new technique for selecting static threshold value from a minimum standard features in detecting fast attack from the victim perspective. In order to increase the confidence of the threshold value the result is verified using Statistical Process Control (SPC). The implementation of this approach shows that the threshold selected is suitable for identifying the fast attack in real time.
Neural networks are increasingly used in security applications for intrusion detection on industrial control systems. In this work we examine two areas that must be considered for their effective use. Firstly, is their vulnerability to adversarial attacks when used in a time series setting. Secondly, is potential over-estimation of performance arising from data leakage artefacts. To investigate these areas we implement a long short-term memory (LSTM) based intrusion detection system (IDS) which effectively detects cyber-physical attacks on a water treatment testbed representing a strong baseline IDS. For investigating adversarial attacks we model two different white box attackers. The first attacker is able to manipulate sensor readings on a subset of the Secure Water Treatment (SWaT) system. By creating a stream of adversarial data the attacker is able to hide the cyber-physical attacks from the IDS. For the cyber-physical attacks which are detected by the IDS, the attacker required on average 2.48 out of 12 total sensors to be compromised for the cyber-physical attacks to be hidden from the IDS. The second attacker model we explore is an $L_{infty}$ bounded attacker who can send fake readings to the IDS, but to remain imperceptible, limits their perturbations to the smallest $L_{infty}$ value needed. Additionally, we examine data leakage problems arising from tuning for $F_1$ score on the whole SWaT attack set and propose a method to tune detection parameters that does not utilise any attack data. If attack after-effects are accounted for then our new parameter tuning method achieved an $F_1$ score of 0.811$pm$0.0103.
We present Poseidon, a new anomaly based intrusion detection system. Poseidon is payload-based, and presents a two-tier architecture: the first stage consists of a Self-Organizing Map, while the second one is a modified PAYL system. Our benchmarks on the 1999 DARPA data set show a higher detection rate and lower number of false positives than PAYL and PHAD.
The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.
This paper proposes an intrusion detection and prediction system based on uncertain and imprecise inference networks and its implementation. Giving a historic of sessions, it is about proposing a method of supervised learning doubled of a classifier permitting to extract the necessary knowledge in order to identify the presence or not of an intrusion in a session and in the positive case to recognize its type and to predict the possible intrusions that will follow it. The proposed system takes into account the uncertainty and imprecision that can affect the statistical data of the historic. The systematic utilization of an unique probability distribution to represent this type of knowledge supposes a too rich subjective information and risk to be in part arbitrary. One of the first objectives of this work was therefore to permit the consistency between the manner of which we represent information and information which we really dispose.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا