Do you want to publish a course? Click here

An algebraic analogue of Exel-Pardo C*-algebras

113   0   0.0 ( 0 )
 Added by Adam Sierakowski
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We introduce an algebraic version of the Katsura $C^*$-algebra of a pair $A,B$ of integer matrices and an algebraic version of the Exel-Pardo $C^*$-algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras and construct a homomorphism of the latter into a Steinberg algebra that, under mild conditions, is an isomorphism. Working with Steinberg algebras over non-Hausdorff groupoids we prove that in the unital case, our algebraic version of Katsura $C^*$-algebras are all isomorphic to Steinberg algebras.



rate research

Read More

We generalize a recent construction of Exel and Pardo, from discrete groups acting on finite directed graphs to locally compact groups acting on topological graphs. To each cocycle for such an action, we construct a $C^*$-correspondence whose associated Cuntz-Pimsner algebra is the analog of the Exel-Pardo $C^*$-algebra.
We introduce a new approach to the classification of operator identities, based on basic concepts from the theory of algebraic operads together with computational commutative algebra applied to determinantal ideals of matrices over polynomial rings. We consider operator identities of degree 2 (the number of variables in each term) and multiplicity 1 or 2 (the number of operators in each term), but our methods apply more generally. Given an operator identity with indeterminate coefficients, we use partial compositions to construct a matrix of consequences, and then use computer algebra to determine the values of the indeterminates for which this matrix has submaximal rank. For multiplicity 1 we obtain six identities, including the derivation identity. For multiplicity 2 we obtain eighteen identities and two parametrized families, including the left and right averaging identities, the Rota-Baxter identity, the Nijenhuis identity, and some new identities which deserve further study.
We consider Toeplitz and Cuntz-Krieger $C^*$-algebras associated with finitely aligned left cancellative small categories. We pay special attention to the case where such a category arises as the Zappa-Szep product of a category and a group linked by a one-cocycle. As our main application, we obtain a new approach to Exel-Pardo algebras in the case of row-finite graphs. We also present some other ways of constructing $C^*$-algebras from left cancellative small categories and discuss their relationship.
In this paper, we introduce the definition of generalized BiHom-Lie algebras and generalized BiHom-Lie admissible algebras in the category ${}_H{mathcal M}$ of left modules for any quasitriangular Hopf algebra $(H, R) $. Also, we describe the BiHom-Lie ideal structures of the BiHom-associative algebras.
A Leavitt labelled path algebra over a commutative unital ring is associated with a labelled space, generalizing Leavitt path algebras associated with graphs and ultragraphs as well as torsion-free commutative algebras generated by idempotents. We show that Leavitt labelled path algebras can be realized as partial skew group rings, Steinberg algebras, and Cuntz-Pimsner algebras. Via these realizations we obtain generalized uniqueness theorems, a description of diagonal preserving isomorphisms and we characterize simplicity of Leavitt labelled path algebras. In addition, we prove that a large class of partial skew group rings can be realized as Leavitt labelled path algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا