No Arabic abstract
Manipulation of a quantum system requires the knowledge of how it evolves. To impose that the dynamics of a system becomes a particular target operation (for any preparation of the system), it may be more useful to have an equation of motion for the dynamics itself--rather than the state. Here we develop a Markovian master equation for the process matrix of an open system, which resembles the Lindblad Markovian master equation. We employ this equation to introduce a scheme for optimal local coherent process control at target times, and extend the Krotov technique to obtain optimal control. We illustrate utility of this framework through several quantum coherent control scenarios, such as optimal decoherence suppression, gate simulation, and passive control of the environment, in all of which we aim to simulate a given terminal process at a given final time.
Based on a recently developed notion of physical realizability for quantum linear stochastic systems, we formulate a quantum LQG optimal control problem for quantum linear stochastic systems where the controller itself may also be a quantum system and the plant output signal can be fully quantum. Such a control scheme is often referred to in the quantum control literature as coherent feedback control. It distinguishes the present work from previous works on the quantum LQG problem where measurement is performed on the plant and the measurement signals are used as input to a fully classical controller with no quantum degrees of freedom. The difference in our formulation is the presence of additional non-linear and linear constraints on the coefficients of the sought after controller, rendering the problem as a type of constrained controller design problem. Due to the presence of these constraints our problem is inherently computationally hard and this also distinguishes it in an important way from the standard LQG problem. We propose a numerical procedure for solving this problem based on an alternating projections algorithm and, as initial demonstration of the feasibility of this approach, we provide fully quantum controller design examples in which numerical solutions to the problem were successfully obtained. For comparison, we also consider the case of classical linear controllers that use direct or indirect measurements, and show that there exists a fully quantum linear controller which offers an improvement in performance over the classical ones.
A completely depolarising quantum channel always outputs a fully mixed state and thus cannot transmit any information. In a recent Letter [D. Ebler et al., Phys. Rev. Lett. 120, 120502 (2018)], it was however shown that if a quantum state passes through two such channels in a quantum superposition of different orders - a setup known as the quantum switch - then information can nevertheless be transmitted through the channels. Here, we show that a similar effect can be obtained when one coherently controls between sending a target system through one of two identical depolarising channels. Whereas it is tempting to attribute this effect in the quantum switch to the indefinite causal order between the channels, causal indefiniteness plays no role in this new scenario. This raises questions about its role in the corresponding effect in the quantum switch. We study this new scenario in detail and we see that, when quantum channels are controlled coherently, information about their specific implementation is accessible in the output state of the joint control-target system. This allows two different implementations of what is usually considered to be the same channel to therefore be differentiated. More generally, we find that to completely describe the action of a coherently controlled quantum channel, one needs to specify not only a description of the channel (e.g., in terms of Kraus operators), but an additional transformation matrix depending on its implementation.
In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (TLS), whose energy is periodically modulated while the system is coupled to thermal baths. When the modulation interval is short compared to the bath memory time, the system-bath correlations are affected, thereby causing cooling or heating of the TLS, depending on the interval. In steady state, a periodically-modulated TLS coupled to two distinct baths constitutes the simplest quantum heat machine (QHM) that may operate as either an engine or a refrigerator, depending on the modulation rate. We find their efficiency and power-output bounds and the conditions for attaining these bounds. An extension of this model to multilevel systems shows that the QHM power output can be boosted by the multilevel degeneracy. These results are used to scrutinize basic thermodynamic principles: (i) Externally-driven/modulated QHMs may attain the Carnot efficiency bound, but when the driving is done by a quantum device (piston), the efficiency strongly depends on its initial quantum state. Such dependence has been unknown thus far. (ii) The refrigeration rate effected by QHMs does not vanish as the temperature approaches absolute zero for certain quantized baths, e.g., magnons, thous challenging Nernsts unattainability principle. (iii) System-bath correlations allow more work extraction under periodic control than that expected from the Szilard-Landauer principle, provided the period is in the non-Markovian domain. Thus, dynamically-controlled QHMs may benefit from hitherto unexploited thermodynamic resources.
We exploit a novel approximation scheme to obtain a new and compact formula for the parameters underlying coherent-state control of the evolution of a pair of entangled two-level systems. It is appropriate for long times and for relatively strong external quantum control via coherent state irradiation. We take account of both discrete-state and continuous-variable degrees of freedom. The formula predicts the relative heights of entanglement revivals and their timing and duration.
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in principle, approach a few nanometers. The selectivity is enabled by the nonlinear atomic response, under the conditions of Electromagnetically Induced Transparency, to a control beam with intensity vanishing at a certain location. Practical performance of this technique and its potential applications to quantum information science with cold atoms, ions, and solid-state qubits are discussed.