Do you want to publish a course? Click here

Coherent State Control of Non-Interacting Quantum Entanglement

163   0   0.0 ( 0 )
 Added by Muhammed Yonac
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We exploit a novel approximation scheme to obtain a new and compact formula for the parameters underlying coherent-state control of the evolution of a pair of entangled two-level systems. It is appropriate for long times and for relatively strong external quantum control via coherent state irradiation. We take account of both discrete-state and continuous-variable degrees of freedom. The formula predicts the relative heights of entanglement revivals and their timing and duration.



rate research

Read More

Quantum entanglement between an arbitrary number of remote qubits is examined analytically. We show that there is a non-probabilistic way to address in one context the management of entanglement of an arbitrary number of mixed-state qubits by engaging quantitative measures of entanglement and a specific external control mechanism. Both all-party entanglement and weak inseparability are considered. We show that for $Nge4$, the death of all-party entanglement is permanent after an initial collapse. In contrast, weak inseparability can be deterministically managed for an arbitrarily large number of qubits almost indefinitely. Our result suggests a picture of the path that the system traverses in the Hilbert space.
254 - H. Dong , X.F. Liu , H.C. Fu 2007
This is the second one in our series of papers on indirect quantum control assisted by quantum accessor. In this paper we propose and study a new class of indirect quantum control(IDQC) scheme based on the initial states preparation of the accessor. In the present scheme, after the initial state of the accessor is properly prepared, the system is controlled by repeatedly switching on and off the interaction between the system and the accessor. This is different from the protocol of our first paper, where we manipulate the interaction between the controlled system and the accessor. We prove the controllability of the controlled system for the proposed indirect control scheme. Furthermore, we give an example with two coupled spins qubits to illustrate the scheme, the concrete control process and the controllability.
Based on a recently developed notion of physical realizability for quantum linear stochastic systems, we formulate a quantum LQG optimal control problem for quantum linear stochastic systems where the controller itself may also be a quantum system and the plant output signal can be fully quantum. Such a control scheme is often referred to in the quantum control literature as coherent feedback control. It distinguishes the present work from previous works on the quantum LQG problem where measurement is performed on the plant and the measurement signals are used as input to a fully classical controller with no quantum degrees of freedom. The difference in our formulation is the presence of additional non-linear and linear constraints on the coefficients of the sought after controller, rendering the problem as a type of constrained controller design problem. Due to the presence of these constraints our problem is inherently computationally hard and this also distinguishes it in an important way from the standard LQG problem. We propose a numerical procedure for solving this problem based on an alternating projections algorithm and, as initial demonstration of the feasibility of this approach, we provide fully quantum controller design examples in which numerical solutions to the problem were successfully obtained. For comparison, we also consider the case of classical linear controllers that use direct or indirect measurements, and show that there exists a fully quantum linear controller which offers an improvement in performance over the classical ones.
Single photons are the natural link between the nodes of a quantum network: they coherently propagate and interact with many types of quantum bits including natural and artificial atoms. Ideally, one atom should deterministically control the state of a photon and vice-versa. The interaction between free space photons and an atom is however intrinsically weak and many efforts have been dedicated to develop an efficient interface. Recently, it was shown that the propagation of light can be controlled by an atomic resonance coupled to a cavity or a single mode waveguide. Here we demonstrate that the state of a single artificial atom in a cavity can be efficiently controlled by a few-photon pulse. We study a quantum dot optimally coupled to an electrically-controlled cavity device, acting as a near optimal one-dimensional atom. By monitoring the exciton population through resonant fluorescence, we demonstrate Rabi oscillations with a $pi$-pulse of only 3.8 photons on average. The probability to flip the exciton quantum bit with a single photon Fock state is calculated to reach 55% in the same device.
We examine the weakly interacting atoms in an ultracold Fermi gas leading to a state of macroscopic coherence, from a theoretical perspective. It has been shown that this state can be described as a fermionic coherent state. These coherent states are the eigenstates of fermionic annihilation operators, the eigenvalues being anti-commuting numbers or Grassmann numbers. By exploiting the simple rules of Grassmann algebra and a close kinship between relations evaluated for more familiar bosonic fields and those for fermionic fields, we derive the thermodynamic limit, the spontaneous symmetry breaking and the quasi-particle spectrum of the fermionic system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا