Do you want to publish a course? Click here

Existence of Schrodinger Evolution with Absorbing Boundary Condition

130   0   0.0 ( 0 )
 Added by Roderich Tumulka
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Consider a non-relativistic quantum particle with wave function inside a region $Omegasubset mathbb{R}^3$, and suppose that detectors are placed along the boundary $partial Omega$. The question how to compute the probability distribution of the time at which the detector surface registers the particle boils down to finding a reasonable mathematical definition of an ideal detecting surface; a particularly convincing definition, called the absorbing boundary rule, involves a time evolution for the particles wave function $psi$ expressed by a Schrodinger equation in $Omega$ together with an absorbing boundary condition on $partial Omega$ first considered by Werner in 1987, viz., $partial psi/partial n=ikappapsi$ with $kappa>0$ and $partial/partial n$ the normal derivative. We provide here a discussion of the rigorous mathematical foundation of this rule. First, for the viability of the rule it plays a crucial role that these two equations together uniquely define the time evolution of $psi$; we point out here how the Hille-Yosida theorem implies that the time evolution is well defined and given by a contraction semigroup. Second, we show that the collapse required for the $N$-particle version of the problem is well defined. Finally, we also prove analogous results for the Dirac equation.



rate research

Read More

In this paper an exact transparent boundary condition (TBC) for the multidimensional Schrodinger equation in a hyperrectangular computational domain is proposed. It is derived as a generalization of exact transparent boundary conditions for 2D and 3D equations reported before. A new exact fully discrete (i.e. derived directly from the finite-difference scheme used) 1D transparent boundary condition is also proposed. Several numerical experiments using an improved unconditionally stable numerical implementation in the 3D space demonstrate propagation of Gaussian wave packets in free space and penetration of a particle through a 3D spherically asymmetrical barrier. The application of the multidimensional transparent boundary condition to the dynamics of the 2D system of two non-interacting particles is considered. The proposed boundary condition is simple, robust and can be useful in the field of computational quantum mechanics, when an exact solution of the multidimensional Schrodinger equation (including multi-particle problems) is required.
The scalar products, form factors and correlation functions of the XXZ spin chain with twisted (or antiperiodic) boundary condition are obtained based on the inhomogeneous $T-Q$ relation and the Bethe states constructed via the off-diagonal Bethe Ansatz. It is shown that the scalar product of two off-shell Bethe states, the form factors and the two-point correlation functions can be expressed as the summation of certain determinants. The corresponding homogeneous limits are studied. The results are also checked by the numerical calculations.
232 - Yi Qiao , Jian Wang , Junpeng Cao 2019
The exact solution of an integrable anisotropic Heisenberg spin chain with nearest-neighbour, next-nearest-neighbour and scalar chirality couplings is studied, where the boundary condition is the antiperiodic one. The detailed construction of Hamiltonian and the proof of integrability are given. The antiperiodic boundary condition breaks the $U(1)$-symmetry of the system and we use the off-diagonal Bethe Ansatz to solve it. The energy spectrum is characterized by the inhomogeneous $T-Q$ relations and the contribution of the inhomogeneous term is studied. The ground state energy and the twisted boundary energy in different regions are obtained. We also find that the Bethe roots at the ground state form the string structure if the coupling constant $J=-1$ although the Bethe Ansatz equations are the inhomogeneous ones.
This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of manifolds is presented,and explicit examples are given in order to clearly illustrate the main ideas.
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا