Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
Analytical solutions of the Klein-Gordon equation are obtained by reducing the radial part of the wave equation to a standard form of a second order differential equation. Differential equations of this standard form are solvable in terms of hypergeometric functions and we give an algebraic formulation for the bound state wave functions and for the energy eigenvalues. This formulation is applied for the solutions of the Klein-Gordon equation with some diatomic potentials.
Approximate analytical solutions of the Dirac equation are obtained for some diatomic molecular potentials plus a tensor interaction with spin and pseudospin symmetries with any angular momentum. We find the energy eigenvalue equations in the closed form and the spinor wave functions by using an algebraic method. We also perform numerical calculations for the Poschl-Teller potential to show the effect of the tensor interaction. Our results are consistent with ones obtained before.
Dirac equation is solved for some exponential potentials, hypergeometric-type potential, generalized Morse potential and Poschl-Teller potential with any spin-orbit quantum number $kappa$ in the case of spin and pseudospin symmetry, respectively. We have approximated for non s-waves the centrifugal term by an exponential form. The energy eigenvalue equations, and the corresponding wave functions are obtained by using the generalization of the Nikiforov-Uvarov method.
Considering symmetric strictly convex potentials, a local relationship is inferred from the virial theorem, based on which a real log-concave function can be constructed. Using this as a weight function and in such a way that the virial theorem can still be verified, parameter-free ansatze for the eigenfunctions of the associated Schrodinger equation are built. To illustrate the process, the technique is successfully tested against the harmonic oscillator, in which it leads to the exact eigenfunctions, and against the quartic anharmonic oscillator, which is considered the paradigmatic testing ground for new approaches to the Schrodinger equation.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
Huseyin Akcay
,Ramazan Sever
.
(2012)
.
"Analytical Solutions of Schrodinger Equation for the diatomic molecular potentials with any angular momentum"
.
Ramazan Sever
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا