Do you want to publish a course? Click here

Microtoroidal resonators enhance long-distance dynamical entanglement generation in chiral quantum networks

69   0   0.0 ( 0 )
 Added by Wai-Keong Mok
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chiral quantum networks provide a promising route for realising quantum information processing and quantum communication. Here, we describe how two distant quantum nodes of chiral quantum network become dynamically entangled by a photon transfer through a common 1D chiral waveguide. We harness the directional asymmetry in chirally-coupled single-mode ring resonators to generate entangled state between two atoms. We report a concurrence of up to 0.969, a huge improvement over the 0.736 which was suggested and analyzed in great detail in Ref. [1]. This significant enhancement is achieved by introducing microtoroidal resonators which serve as efficient photonic interface between light and matter. Robustness of our protocol to experimental imperfections such as fluctuations in inter-nodal distance, imperfect chirality, various detunings and atomic spontaneous decay is demonstrated. Our proposal can be utilised for long-distance entanglement generation in quantum networks which is a key ingredient for many applications in quantum computing and quantum information processing.



rate research

Read More

Based on the interaction between a three-level system and a microtoroidal resonator, we present a scheme for long-distance quantum communication in which entanglement generation with near 0.5 success probability and swaps can be implemented by accurate state detection via measuring about 100 photons. With this scheme the average time of successful entanglement distribution over 2500 km with high fidelity can be decreased to only about 30 ms, by 7 orders of magnitude smaller compared with famous Duan-Lukin-Cirac-Zoller (DLCZ) protocol [L.-M. Duan {it et al.} Nature (London) {bf414}, 413 (2001)].
High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a key role in quantum repeaters. The previous significant entanglement purification experiments require two pairs of low-quality entangled states and were demonstrated in table-top. Here we propose and report a high-efficiency and long-distance entanglement purification using only one pair of hyperentangled states. We also demonstrate its practical application in entanglement-based quantum key distribution (QKD). One pair of polarization spatial-mode hyperentanglement was distributed over 11 km multicore fiber (noisy channel). After purification, the fidelity of polarization entanglement arises from 0.771 to 0.887 and the effective key rate in entanglement-based QKD increases from 0 to 0.332. The values of Clauser-Horne-Shimony-Holt (CHSH) inequality of polarization entanglement arises from 1.829 to 2.128. Moreover, by using one pair of hyperentanglement and deterministic controlled-NOT gate, the total purification efficiency can be estimated as 6.6x10^3 times than the experiment using two pairs of entangled states with spontaneous parametric down-conversion (SPDC) sources. Our results offer the potential to be implemented as part of a full quantum repeater and large scale quantum network.
Most quantum system with short-ranged interactions show a fast decay of entanglement with the distance. In this Letter, we focus on the peculiarity of some systems to distribute entanglement between distant parties. Even in realistic models, like the spin-1 Heisenberg chain, sizable entanglement is present between arbitrarily distant particles. We show that long distance entanglement appears for values of the microscopic parameters which do not coincide with known quantum critical points, hence signaling a transition detected only by genuine quantum correlations.
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: I) open, dimerized XX chains, and II) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model I) supports true long-distance entanglement at zero temperature, while model II) supports {it ``quasi long-distance} entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model I) and algebraic in model II), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.
We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating the photon via an optical fiber link of 300 m length. In addition we measured the temporal evolution of the atomic density matrix after projecting the atom via a state measurement of the photon onto several well defined spin states. We find that the state of the single atom dephases on a timescale of 150 $mu$s, which represents an important step toward long-distance quantum networking with individual neutral atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا