The infrared imaging detection is an important and promising technology having wide applications. In this work, we report on the frequency up-conversion detection of an image based on sum frequency generation in a nonlinear crystal with a flat-top beam acting as the pump instead of a Gaussian beam, the up-converted image at 525 nm falls in the sensitive band of visible detectors and human eyes. Both theoretical simulations and the experimental results clearly demonstrate that using a flat-top beam as a pump can improve the fidelity of an image after the up-conversion compared with a Gaussian pump beam. Our scheme will be very promising for infrared image detection based on frequency up-conversion.
Infrared imaging is a crucial technique in a multitude of applications, including night vision, autonomous vehicles navigation, optical tomography, and food quality control. Conventional infrared imaging technologies, however, require the use of materials like narrow-band gap semiconductors which are sensitive to thermal noise and often require cryogenic cooling. Here, we demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas, using a nonlinear wave-mixing process. We experimentally show the up-conversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation. In this process, an infrared image of a target is mixed inside the metasurface with a strong pump beam, translating the image from infrared to the visible in a nanoscale ultra-thin imaging device. Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.
Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. While direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in such artificial lattices is typically realized through electro-optic modulation, yet their operating bandwidth imposes practical constraints on the range of interactions between different frequency components. Here we propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions between discrete spectral lines mediated by frequency conversion in a nonlinear waveguide. We realize triangular chiral-tube lattices in three-dimensional space and explore their four-dimensional generalization. We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs, all within one physical spatial port. We anticipate that our method will provide a new means for the fundamental study of high-dimensional physics and act as an important step towards using topological effects in optical devices operating in the time and frequency domains.
We demonstrate the coherent frequency conversion of structured light, optical beams in which the phase varies in each point of the transverse plane, from the near infrared (803nm) to the visible (527nm). The frequency conversion process makes use of sum-frequency generation in a periodically poled lithium niobate (ppLN) crystal with the help of a 1540-nm Gaussian pump beam. We perform far-field intensity measurements of the frequency-converted field, and verify the sought-after transformation of the characteristic intensity and phase profiles for various input modes. The coherence of the frequency-conversion process is confirmed using a mode-projection technique with a phase mask and a single-mode fiber. The presented results could be of great relevance to novel applications in high-resolution microscopy and quantum information processing.
A novel mechanism of asymmetric frequency conversion is investigated in nonlinear dispersive devices driven parametrically with a biharmonic pump. When the relative phase between the first and second harmonics combined in a two-tone pump is appropriately tuned, nonreciprocal frequency conversion, either upward or downward, can occur. Full directionality and efficiency of the conversion process is possible, provided that the distribution of pump power over the harmonics is set correctly. While this asymmetric conversion effect is generic, we describe its practical realization in a model system consisting of a current-biased, resistively-shunted Josephson junction (RSJ). Here, the multiharmonic Josephson oscillations, generated internally from the static current bias, provide the pump drive.
We demonstrate highly efficient generation of coherent 420nm light via up-conversion of near-infrared lasers in a hot rubidium vapor cell. By optimizing pump polarizations and frequencies we achieve a single-pass conversion efficiency of 260% per Watt, significantly higher than in previous experiments. A full exploration of the coherent light generation and fluorescence as a function of both pump frequencies reveals that coherent blue light is generated close to 85Rb two-photon resonances, as predicted by theory, but at high vapor pressure is suppressed in spectral regions that do not support phase matching or exhibit single-photon Kerr refraction. Favorable scaling of our current 1mW blue beam power with additional pump power is predicted.