No Arabic abstract
Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. While direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in such artificial lattices is typically realized through electro-optic modulation, yet their operating bandwidth imposes practical constraints on the range of interactions between different frequency components. Here we propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions between discrete spectral lines mediated by frequency conversion in a nonlinear waveguide. We realize triangular chiral-tube lattices in three-dimensional space and explore their four-dimensional generalization. We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs, all within one physical spatial port. We anticipate that our method will provide a new means for the fundamental study of high-dimensional physics and act as an important step towards using topological effects in optical devices operating in the time and frequency domains.
Photonic lattices are usually considered to be limited by their lack of methods to include interactions. We address this issue by introducing mean-field interactions through optical components which are external to the photonic lattice. The proposed technique to realise mean-field interacting photonic lattices relies on a Suzuki-Trotter decomposition of the unitary evolution for the full Hamiltonian. The technique realises the dynamics in an analogous way to that of a step-wise numerical implementation of quantum dynamics, in the spirit of digital quantum simulation. It is a very versatile technique which allows for the emulation of interactions that do not only depend on inter-particle separations or do not decay with particle separation. We detail the proposed experimental scheme and consider two examples of interacting phenomena, self-trapping and the decay of Bloch oscillations, that are observable with the proposed technique.
We formulate theoretically and demonstrate experimentally an all-optical method for reconstruction of the amplitude, phase and coherence of frequency combs from a single-shot measurement of the spectral intensity. Our approach exploits synthetic frequency lattices with pump-induced spectral short- and long-range couplings between different signal components across a broad bandwidth of of hundreds GHz in a single nonlinear fiber. When combined with ultra-fast signal conversion techniques, this approach has the potential to provide real-time measurement of pulse-to-pulse variations in the spectral phase and coherence properties of exotic light sources.
In this contribution we introduce a new strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasi-particle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a new mechanism of quasi-resonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling and gain give rise to a new scenario for the excitation of long- range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.
We investigate theoretically frequency comb generation in a bottle microresonator accounting for the azimuthal and axial degrees of freedom. We first identify a discrete set of the axial nonlinear modes of a bottle microresonator that appear as tilted resonances bifurcating from the spectrum of linear axial modes. We then study azimuthal modulational instability of these modes and show that families of 2D soliton states localized both azimuthally and axially bifurcate from them at critical pump frequencies. Depending on detuning, 2D solitons can be either stable, or form persistent breathers, chaotic spatio-temporal patterns, or exhibit collapse-like evolution.
The stabilization of one-dimensional solitons by a nonlinear lattice against the critical collapse in the focusing quintic medium is a challenging issue. We demonstrate that this purpose can be achieved by combining a nonlinearlatticeandsaturationofthequinticnonlinearity. Thesystemsupportsthreespeciesofsolitons, namely, fundamental (even-parity) ones and dipole (odd-parity) modes of on- and off-site-centered types. Very narrow fundamental solitons are found in an approximate analytical form, and systematic results for very broad unstable and moderately broad partly stable solitons, including their existence and stability areas, are produced by means of numerical methods. Stability regions of the solitons are identified by means of systematic simulations. The stability of all the soliton species obeys the Vakhitov-Kolokolov criterion.