No Arabic abstract
The design of uranium-based thermoelectric materials presents a novel and intriguing strategy for directly converting nuclear heat into electrical power. Using high-level first-principles approach combined with accurate solution of Boltzmann transport equation, we demonstrate that a giant n-type power factor of 13.8 mW/mK^2 and a peak ZT value of 2.2 can be realized in the heavy-fermion UN2 compound at 700 K. Such promising thermoelectric performance arises from the large degeneracy (Nv=14) of heavy conduction band coupled with weak electron-phonon interactions, which is in principle governed by the strong Coulomb correlation among the partially filled U-5f electrons in the face-centered cubic structure. Collectively, our theoretical work suggests that the energetic UN2 is an excellent alternative to efficient radioisotope power conversion, which also uncovers an underexplored area for thermoelectric research.
Half-Heusler alloys (MgAgSb structure) are promising thermoelectric materials. RNiSn half-Heusler phases (R=Hf, Zr, Ti) are the most studied in view of their thermal stability. The highest dimensionless figure of merit (ZT) obtained is ~1 in the temperature range ~450-900oC, primarily achieved in nanostructured alloys. Through proper annealing, ZT~1.2 has been obtained in a previous ZT~1 n-type (Hf,Zr)NiSn phase without the nanostructure. There is an appreciable increase in the power factor, decrease in charge carrier density, and increase in carrier mobility. The findings are attributed to the improvement of structural order. Present approach may be applied to optimize the functional properties of Heusler-type alloys.
Thermoelectric (TE) conversion in conducting materials is of eminent importance for providing renewable energy and solid-state cooling. Although traditionally, the Seebeck effect plays a key role for the TE figure of merit zST, it encounters fundamental constraints hindering its conversion efficiency. Most notably, there are the charge compensation of electrons and holes that diminishes this effect, and the intertwinement of the corresponding electrical and thermal conductivities through the Wiedemann-Franz (WF) law which makes their independent optimization in zST impossible. Here, we demonstrate that in the Dirac semimetal Cd3As2 the Nernst effect, i.e., the transverse counterpart of the Seebeck effect, can generate a large TE figure of merit zNT. At room temperature, zNT = 0.5 in a small field of 2 T; it significantly surmounts its longitudinal counterpart zST for any field and further increases upon warming. A large Nernst effect is generically expected in topological semimetals, benefiting from both the bipolar transport of compensated electrons and holes and their high mobilities. In this case, heat and charge transport are orthogonal, i.e., not intertwined by the WF law anymore. More importantly, further optimization of zNT by tuning the Fermi level to the Dirac node can be anticipated due to not only the enhanced bipolar transport, but also the anomalous Nernst effect arising from a pronounced Berry curvature. A combination of the former topologically trivial and the latter nontrivial advantages promises to open a new avenue towards high-efficient transverse thermoelectricity.
Dimensionless thermoelectric figure of merit $ZT$ is investigated for two-dimensional organic conductors $tau-(EDO-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$, $tau$-(EDT-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$ and $tau$-(P-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$ ($y le 0.875$), respectively. The $ZT$ values were estimated by measuring electrical resistivity, thermopower and thermal conductivity simultaneously. The largest $ZT$ is 2.7 $times$ 10$^{-2}$ at 155 K for $tau-(EDT-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$, 1.5 $times$ 10$^{-2}$ at 180 K for $tau-(EDO-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$ and 5.4 $times$ 10$^{-3}$ at 78 K for $tau-(P-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$, respectively. Substitution of the donor molecules fixing the counter anion revealed EDT-S,S-DMEDT-TTF is the best of the three donors to obtain larger $ZT$.
Thermoelectric (TE) materials are among very few sustainable yet feasible energy solutions of present time. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only its small fraction was scanned experimentally and/or computationally so far. Employing a compressed-sensing based symbolic regression in an active-learning framework, we have not only identified a trend in materials compositions for superior TE performance, but have also predicted and experimentally synthesized several extremely high performing novel TE materials. Among these, we found Ag$_{0.55}$Cu$_{0.45}$GaTe$_2$ to possess an experimental figure of merit as high as ~2.8 at 827 K, which is a breakthrough in the field. The presented methodology demonstrates the importance and tremendous potential of physically informed descriptors in material science, in particular for relatively small data sets typically available from experiments at well-controlled conditions.
The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons is investigated. Using the Greens function method, the tight-binding approximation for the electron Hamiltonian and the 4th nearest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.