Do you want to publish a course? Click here

Change of electronic properties on transition from high-entropy to Ni-rich (TiZrNbCu)(1-x)Ni(x) alloys

332   0   0.0 ( 0 )
 Added by Mario Basletic
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of comprehensive study of electronic properties of (TiZrNbCu)(1-x)Ni(x) metallic glasses performed in broad composition range x encompassing both, high entropy (HE) range, and conventional Ni-base alloy concentration range, x >= 0.35. The electronic structure studied by photoemission spectroscopy and low temperature specific heat (LTSH) reveal a split-band structure of density of states inside valence band with d-electrons of Ti, Zr, Nb and also Ni present at Fermi level N(E_F), whereas LTSH and magnetoresistivity results show that variation of N(E_F) with x changes in Ni-base regime. The variation of superconducting transition temperatures with x closely follows that of N(E_F). The electrical resistivities of all alloys are high and decrease with increasing temperature over most of explored temperature range, and their temperature dependence seems dominated by weak localization effects over a broad temperature range (10-300 K). The preliminary study of Hall effect shows positive Hall coefficient that decreases rapidly in Ni-base alloys.



rate research

Read More

127 - Somnath Jana 2018
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization. We find that the delay is correlated to the Curie temperature and hence also the exchange interaction. The temporal evolution of demagnetization is fitted to a magnon diffusion model based on the presupposition of enhanced ultrafast magnon generation in the Fe sublattice. The spin wave stiffness extracted from this model correspond well to known experimental values.
The net entropy change corresponding to the charge carriers in a Ni-doped FeRh bulk polycrystal was experimentally evaluated in a single sample using low temperature heat capacity experiments with applied magnetic field, and using Seebeck effect and Hall coefficient measurements at high temperatures across the first order transition. From the heat capacity data a value for the electronic entropy change (Delta S_{el}approx8.9) J kg(^{-1})K(^{-1}) was extracted, whereas a value of up to 4 J kg(^{-1})K(^{-1}) was obtained form the Seebeck coefficient. Additionally, the analysis of the Seebeck coefficient allows tracing the evolution of the electronic entropy change with applied magnetic field. An increase of the electronic entropy with increasing applied magnetic field is evidenced, as high as 10 percent at 6 T.
147 - S. S. Acharya 2019
Resistance of Fe$_{1-x}$Ni$_x$(x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.9) has been measured using four probe method from 5K to 300K with and without a longitudinal magnetic field of 8T. The zero field resistivity of x=0.1 and 0.9 alloys, predominant contribution to resistivity above near room temperature is due to electron-phonon scattering, whereas for x=05 and 0.7 alloys electron-magnon scattering is dominant. Alloys with x=0.1 and 0.9 exhibit positive magnetoresistance(MR) from 5K to 300K. For x=0.5 and 0.7 alloys, magnetoresistance changes sign from positive to negative with increase in temperature. The temperature at which sign changes increase with Ni concentration in the alloy. The field dependent magnetoresistance is positive for x=0.1, 0.7 and 0.9 alloys whereas it is negative for x=0.5 alloy. MR follows linear behaviour with field for x=0.1 alloy. MR of all other alloys follow a second order polynomial in field.
Magnetic susceptibility of the isostructural Ce(Ni{1-x}Cu{x})5 alloys (0< x <0.9) was studied as a function of the hydrostatic pressure up to 2 kbar at fixed temperatures 77.3 and 300 K, using a pendulum-type magnetometer. A pronounced magnitude of the pressure effect is found to be negative in sign and to depend strongly and non-monotonously on the Cu content, showing a sharp maximum in vicinity of x = 0.4. The experimental results are discussed in terms of the Ce valence change under pressure. It has been concluded that the fractional occupation of the f-states, which corresponds to the half-integer valence of Ce ion (3.5), is favorable for the valence instability in alloys studied. For the reference CeNi5 compound the main contributions to magnetic susceptibility and their volume dependence are calculated ab initio within the local spin density approximation (LSDA), and appeared to be in close agreement with experimental data.
143 - S. S. Acharya 2019
This paper reports high resolution X-ray photoelectron spectroscopy (XPS) studies on Fe$_{1-x}$Ni$_x$ (x=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9) alloys down to 10 K temperature. Core levels and Auger transitions of the alloys except the invar alloy (x=0.4) exhibit no observable temperature induced changes. The invar alloy exhibits changes in the core levels below 20 K temperature that strongly depend on the core level. Such core level dependent changes with temperature were attributed to the precipitation of spin glass like phase below 20 K only in the invar alloy. Ni L$_3$M$_{45}$M$_{45}$ Auger transition also supported such precipitation below 20 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا