Do you want to publish a course? Click here

First investigation of the response of solar cells to heavy ions above 1 AMeV

77   0   0.0 ( 0 )
 Added by Beatriz Jurado
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solar cells have been used since several decades for the detection of fission fragments at about 1 AMeV. The advantages of solar cells regarding their cost (few euros) and radiation damage resistance make them an interesting candidate for heavy ion detection and an appealing alternative to silicon detectors. A first exploratory measurement of the response of solar cells to heavy ions at energies above 1 AMeV has been performed at the GANIL facility, Caen, France. Such measurements were performed with 84Kr and 129Xe beams ranging from 7 to 13 AMeV. The energy and time response of several types of solar cells were studied. The best performance was observed for cells of 10x10 mm2, with an energy and time resolution of {sigma}(E)/E=1.4% and 3.6 ns (FWHM), respectively. Irradiations at rates from a few hundred to 106 particles per second were also performed to investigate the behavior of the cells with increasing intensity.



rate research

Read More

87 - M. Arenz , W.-J. Baek , M. Beck 2018
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium beta decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of Autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous Kr-83m was injected into the KATRIN source section, and a condensed Kr-83m source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus.
Plastic scintillation detectors for Time-of-Flight (TOF) measurements are almost essential for event-by-event identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of 50 $times$ 50 $times$ 3$^{t}$ mm$^3$ and 80 $times$ 100 $times$ 3$^{t}$ mm$^3$ have been set up at the external target facility (ETF), Institute of Modern Physics. Their time, energy and position responses are measured with $^{18}$O primary beam at 400 MeV/nucleon. After the off-line walk-effect and position corrections, the time resolution of the two detectors are determined to be 27 ps ($sigma$) and 36 ps ($sigma$), respectively. Both detectors have nearly the same energy resolution of 3$%$ ($sigma$) and position resolution of 2 mm ($sigma$). The detectors have been used successfully in nuclear reaction cross section measurements, and will be be employed for upgrading RIBLL2 beam line at IMP as well as for the high energy branch at HIAF.
We measured the response of BAS-TR imaging plate (IP) to energetic aluminum ions in the 0 to 222 MeV energy range, and compared it with predictions from a Monte Carlo simulation code using two different IP models. Energetic aluminum ions were produced with an intense laser pulse, and the response was evaluated from cross-calibration between CR-39 track detector and IP energy spectrometer. For the first time, we obtained the response function of the BAS-TR IP for aluminum ions in the energy range from 0 to 222 MeV. Notably the IP sensitivity in the exponential model is nearly constant from 36 MeV to 160 MeV.
61 - J.W.Zhao , B.H.Sun , L.C. He 2019
In typical nuclear physics experiments with radioactive ion beams (RIBs) selected by the in-flight separation technique, Si detectors or ionization chambers are usually equipped for the charge determination of RIBs. The obtained charge resolution relies on the performance of these detectors for energy loss determination, and this affects the particle identification capability of RIBs. We present an approach on improving the resolution of charge measurement for heavy ions by using the abundant energy loss information from different types of existing detectors along the beam line. Without altering the beam line and detectors, this approach can improve the charge resolution by more than 12% relative to the multiple sampling ionization chamber of the best resolution.
Results are presented from an exploratory study involving x-ray irradiation of select deuterated materials. Titanium deuteride (TiD2) plus deuterated polyethylene ([-CD2-]n; DPE), DPE alone, and for control, hydrogen-based polyethylene ([-CH2-]n; HPE) samples and nondeuterated titanium samples were exposed to x-ray irradiation. These samples were exposed to various energy levels from 65 to 280 kV with prescribed electron flux from 500 to 9000 micro-A impinging on a tungsten braking target, with total exposure times ranging from 55 to 280 min. Gamma activity was measured using a high-purity germanium (HPGe) detector, and for all samples no gamma activity above background was detected. Alpha and beta activities were measured using a gas proportional counter, and for select samples beta activity was measured with a liquid scintillator spectrometer. The majority of the deuterated materials subjected to the microfocus x-ray irradiation exhibited postexposure beta activity above background and several showed short-lived alpha activity. The HPE and nondeuterated titanium control samples exposed to the x-ray irradiation showed no postexposure alpha or beta activities above background. Several of the samples (SL10A, SL16, SL17A) showed beta activity above background with a greater than 4-sigma confidence level, months after exposure. Portions of SL10A, SL16, and SL17A samples were also scanned using a beta scintillator and found to have beta activity in the tritium energy band, continuing without noticeable decay for over 12 months. Beta scintillation investigation of as-received materials (before x-ray exposure) showed no beta activity in the tritium energy band, indicating the beta emitters were not in the starting materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا