Do you want to publish a course? Click here

Inverse eigenproblems and approximation problems for the generalized reflexive and antireflexive matrices with respect to a pair of generalized reflection matrices

73   0   0.0 ( 0 )
 Added by Haixia Chang
 Publication date 2019
  fields
and research's language is English
 Authors Haixia Chang




Ask ChatGPT about the research

A matrix $P$ is said to be a nontrivial generalized reflection matrix over the real quaternion algebra $mathbb{H}$ if $P^{ast }=P eq I$ and $P^{2}=I$ where $ast$ means conjugate and transpose. We say that $Ainmathbb{H}^{ntimes n}$ is generalized reflexive (or generalized antireflexive) with respect to the matrix pair $(P,Q)$ if $A=PAQ$ $($or $A=-PAQ)$ where $P$ and $Q$ are two nontrivial generalized reflection matrices of demension $n$. Let ${large varphi}$ be one of the following subsets of $mathbb{H}^{ntimes n}$ : (i) generalized reflexive matrix; (ii)reflexive matrix; (iii) generalized antireflexive matrix; (iiii) antireflexive matrix. Let $Zinmathbb{H}^{ntimes m}$ with rank$left( Zright) =m$ and $Lambda=$ diag$left( lambda_{1},...,lambda_{m}right) .$ The inverse eigenproblem is to find a matrix $A$ such that the set ${large varphi }left( Z,Lambdaright) =left{ Ain{large varphi}text{ }|text{ }AZ=ZLambdaright} $ nonempty and find the general expression of $A.$ ewline In this paper, we investigate the inverse eigenproblem ${large varphi}left( Z,Lambdaright) $. Moreover, the approximation problem: $underset{Ain{large varphi}}{minleftVert A-ErightVert _{F}}$ is studied, where $E$ is a given matrix over $mathbb{H}$ and $parallel cdotparallel_{F}$ is the Frobenius norm.



rate research

Read More

A reflexive generalized inverse and the Moore-Penrose inverse are often confused in statistical literature but in fact they have completely different behaviour in case the population covariance matrix is not a multiple of identity. In this paper, we study the spectral properties of a reflexive generalized inverse and of the Moore-Penrose inverse of the sample covariance matrix. The obtained results are used to assess the difference in the asymptotic behaviour of their eigenvalues.
148 - Kezheng Zuo , Yu Li , Gaojun Luo 2020
A new generalized inverse for a square matrix $Hinmathbb{C}^{ntimes n}$, called CCE-inverse, is established by the core-EP decomposition and Moore-Penrose inverse $H^{dag}$. We propose some characterizations of the CCE-inverse. Furthermore, two canonical forms of the CCE-inverse are presented. At last, we introduce the definitions of CCE-matrices and $k$-CCE matrices, and prove that CCE-matrices are the same as $i$-EP matrices studied by Wang and Liu in [The weak group matrix, Aequationes Mathematicae, 93(6): 1261-1273, 2019].
In this paper, we introduce two new generalized inverses of matrices, namely, the $bra{i}{m}$-core inverse and the $pare{j}{m}$-core inverse. The $bra{i}{m}$-core inverse of a complex matrix extends the notions of the core inverse defined by Baksalary and Trenkler cite{BT} and the core-EP inverse defined by Manjunatha Prasad and Mohana cite{MM}. The $pare{j}{m}$-core inverse of a complex matrix extends the notions of the core inverse and the ${rm DMP}$-inverse defined by Malik and Thome cite{MT}. Moreover, the formulae and properties of these two new concepts are investigated by using matrix decompositions and matrix powers.
The Nearest Neighbour Spacing (NNS) distribution can be computed for generalized symmetric 2x2 matrices having different variances in the diagonal and in the off-diagonal elements. Tuning the relative value of the variances we show that the distributions of the level spacings exhibit a crossover from clustering to repulsion as in GOE. The analysis is extended to 3x3 matrices where distributions of NNS as well as Ratio of Nearest Neighbour Spacing (RNNS) show similar crossovers. We show that it is possible to calculate NNS distributions for Hermitian matrices (N=2, 3) where also crossovers take place between clustering and repulsion as in GUE. For large symmetric and Hermitian matrices we use interpolation between clustered and repulsive regimes and identify phase diagrams with respect to the variances.
In this paper, we introduce the notion of a (generalized) right core inverse and give its characterizations and expressions. Then, we provide the relation schema of (one-sided) core inverses, (one-sided) pseudo core inverses and EP elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا