Do you want to publish a course? Click here

Generalized core inverses of matrices

62   0   0.0 ( 0 )
 Added by Sanzhang Xu
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce two new generalized inverses of matrices, namely, the $bra{i}{m}$-core inverse and the $pare{j}{m}$-core inverse. The $bra{i}{m}$-core inverse of a complex matrix extends the notions of the core inverse defined by Baksalary and Trenkler cite{BT} and the core-EP inverse defined by Manjunatha Prasad and Mohana cite{MM}. The $pare{j}{m}$-core inverse of a complex matrix extends the notions of the core inverse and the ${rm DMP}$-inverse defined by Malik and Thome cite{MT}. Moreover, the formulae and properties of these two new concepts are investigated by using matrix decompositions and matrix powers.



rate research

Read More

In this paper, we introduce the notion of a (generalized) right core inverse and give its characterizations and expressions. Then, we provide the relation schema of (one-sided) core inverses, (one-sided) pseudo core inverses and EP elements.
Let $mathscr{C}$ be an additive category with an involution $ast$. Suppose that $varphi : X rightarrow X$ is a morphism with kernel $kappa : K rightarrow X$ in $mathscr{C}$, then $varphi$ is core invertible if and only if $varphi$ has a cokernel $lambda: X rightarrow L$ and both $kappalambda$ and $varphi^{ast}varphi^3+kappa^{ast}kappa$ are invertible. In this case, we give the representation of the core inverse of $varphi$. We also give the corresponding result about dual core inverse.
169 - Adel Alahmadi , S. K. Jain , 2018
In a semiprime ring, von Neumann regular elements are determined by their inner inverses. In particular, for elements $a,b$ of a von Neumann regular ring $R$, $a=b$ if and only if $I(a)=I(b)$, where $I(x)$ denotes the set of inner inverses of $xin R$. We also prove that, in a semiprime ring, the same is true for reflexive inverses.
148 - Kezheng Zuo , Yu Li , Gaojun Luo 2020
A new generalized inverse for a square matrix $Hinmathbb{C}^{ntimes n}$, called CCE-inverse, is established by the core-EP decomposition and Moore-Penrose inverse $H^{dag}$. We propose some characterizations of the CCE-inverse. Furthermore, two canonical forms of the CCE-inverse are presented. At last, we introduce the definitions of CCE-matrices and $k$-CCE matrices, and prove that CCE-matrices are the same as $i$-EP matrices studied by Wang and Liu in [The weak group matrix, Aequationes Mathematicae, 93(6): 1261-1273, 2019].
Let R be a unital ring with involution, we give the characterizations and representations of the core and dual core inverses of an element in R by Hermitian elements (or projections) and units. For example, let a in R and n is an integer greater than or equal to 1, then a is core invertible if and only if there exists a Hermitian element (or a projection) p such that pa=0, a^n+p is invertible. As a consequence, a is an EP element if and only if there exists a Hermitian element (or a projection) p such that pa=ap=0, a^n+p is invertible. We also get a new characterization for both core invertible and dual core invertible of a regular element by units, and their expressions are shown. In particular, we prove that for n is an integer greater than or equal to 2, a is both Moore-Penrose invertible and group invertible if and only if (a*)^n is invertible along a.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا