Do you want to publish a course? Click here

Model for Asteroid Regolith to Guide Simulant Development

150   0   0.0 ( 0 )
 Added by Philip Metzger
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

When creating asteroid regolith simulant, it is necessary to have a model of asteroid regolith to guide and to evaluate the simulant. We created a model through evaluation and synthesis of the available data sets including (1) the returned sample from Itokawa by the Hayabusa spacecraft, (2) imagery from the Hayabusa and NEAR spacecraft visiting Itokawa and Eros, respectively, (3) thermal infrared observations from asteroids, (4) the texture of meteorite regolith breccias, and (5) observations and modeling of the ejecta clouds from disrupted asteroids. Comparison of the Hayabusa returned sample with other data sets suggest the surficial material in the smooth regions of asteroids is dissimilar to the bulk regolith, probably due to removal of fines by photoionization and solar wind interaction or by preferential migration of mid-sized particles into the smooth terrain. We found deep challenges interpreting and applying the thermal infrared data so we were unable to use those observations in the model. Texture of regolith breccias do not agree with other data sets, suggesting the source regolith on Vesta was coarser than typical asteroid regolith. The observations of disrupted asteroids present a coherent picture of asteroid bulk regolith in collisional equilibrium, unlike lunar regolith, HED textures, and the Itokawa returned sample. The model we adopt consists of power laws for the bulk regolith in unspecified terrain (differential power index -3.5, representing equilibrium), and the surficial regolith in smooth terrain (differential power index -2.5, representing disequilibrium). Available data do not provide adequate constraints on maximum and minimum particle sizes for these power laws, so the model treats them as user-selectable parameters for the simulant.



rate research

Read More

NASA has developed a Figure of Merit method to grade the fidelity of lunar simulants for scientific and engineering purposes. Here we extend the method to grade asteroid simulants, both regolith and cobble variety, and we apply the method to the newly developed asteroid regolith and cobble simulant UCF/DSI-CI-2. The reference material that is used to evaluate this simulant for most asteroid properties is the Orgueil meteorite. Those properties are the mineralogical and elemental composition, grain density, bulk density of cobbles, magnetic susceptibility, mechanical strength of cobbles, and volatile release patterns. To evaluate the regolith simulants particle sizing we use a reference model that was based upon the sample returned from Itokawa by Hayabusa, the boulder count on Hayabusa, and four cases of disrupted asteroids that indicate particle sizing of the subsurface material. Compared to these references, the simulant has high figures of merit, indicating it is a good choice for a wide range of scientific and engineering applications. We recommend this methodology to the wider asteroid community and in the near future will apply it to additional asteroid simulants currently under development.
(16) Psyche is the largest M-type asteroid in the main belt and the target of the NASA Discovery-class Psyche mission. Despite gaining considerable interest in the scientific community, Psyches composition and formation remain unconstrained. Originally, Psyche was considered to be almost entirely composed of metal due to its high radar albedo and spectral similarities to iron meteorites. More recent telescopic observations suggest the additional presence of low-Fe pyroxene and exogenic carbonaceous chondrites on the asteroids surface. To better understand the abundances of these additional materials, we investigated visible near-infrared (0.35 - 2.5 micron) spectral properties of three-component laboratory mixtures of metal, low-Fe pyroxene, and carbonaceous chondrite. We compared the band depths and spectral slopes of these mixtures to the telescopic spectrum of (16) Psyche to constrain material abundances. We find that the best matching mixture to Psyche consists of 82.5% metal, 7% low-Fe pyroxene, and 10.5% carbonaceous by weight, suggesting that the asteroid is less metallic than originally estimated (~94%). The relatively high abundance of carbonaceous chondrite material estimated from our laboratory experiments implies the delivery of this exogenic material through low velocity collisions to Psyches surface. Assuming that Psyches surface is representative of its bulk material content, our results suggest a porosity of 35% to match recent density estimates.
Orbit-determination programs find the orbit solution that best fits a set of observations by minimizing the RMS of the residuals of the fit. For near-Earth asteroids, the uncertainty of the orbit solution may be compatible with trajectories that impact Earth. This paper shows how incorporating the impact condition as an observation in the orbit-determination process results in a robust technique for finding the regions in parameter space leading to impacts. The impact pseudo-observation residuals are the b-plane coordinates at the time of close approach and the uncertainty is set to a fraction of the Earth radius. The extended orbit-determination filter converges naturally to an impacting solution if allowed by the observations. The uncertainty of the resulting orbit provides an excellent geometric representation of the virtual impactor. As a result, the impact probability can be efficiently estimated by exploring this region in parameter space using importance sampling. The proposed technique can systematically handle a large number of estimated parameters, account for nongravitational forces, deal with nonlinearities, and correct for non-Gaussian initial uncertainty distributions. The algorithm has been implemented into a new impact monitoring system at JPL called Sentry-II, which is undergoing extensive testing. The main advantages of Sentry-II over JPLs currently operating impact monitoring system Sentry are that Sentry-II can systematically process orbits perturbed by nongravitational forces and that it is generally more robust when dealing with pathological cases. The runtimes and completeness of both systems are comparable, with the impact probability of Sentry-II for 99% completeness being $3times10^{-7}$.
127 - S. Deb , A. K. Sen 2015
The small atmosphereless objects of our solar system, such as asteroids, the moon are covered by layer of dust particles known as regolith, formed by meteoritic impact. The light scattering studies of such dust layer by laboratory experiment and numerical simulation are two important tools to investigate their physical properties. In the present work, the light scattered from a layer of dust particles, containing 0.3{mu}m Al2O3 at wavelength 632.8 nm is analysed. This work has been performed by using a light scattering instrument ellipsometer, at the Department of Physics, Assam Universiy, Silchar, India. Through this experiment, we generated in laboratory the photometric and polarimetric phase curves of light scattered from such a layer. In order to numerically simulate this data, we used Hapkes model combined with Mies single particle scattering properties. The perpendicular and parallel components of single particle albedo and the phase function were derived from Mie theory. By using the Hapkes model combined with Mie theory, the physical properties of the dust grain such as grain size, optical constant (n,k) and wavelength can be studied through this scheme. In literature, till today no theoretical model to represent polarisation caused due to scattering from rough surface is available, which can successfully explain the scattering process. So the main objective of this work is to develop a model which can theoretically estimate polarisation as caused due to scattering from rough surface and also to validate our model with the laboratory data generated in the present work.
Small aperture telescopes provide the opportunity to conduct high frequency, targeted observations of near-Earth Asteroids that are not feasible with larger facilities due to highly competitive time allocation requirements. Observations of asteroids with these types of facilities often focus on rotational brightness variations rather than longer-term phase angle dependent variations (phase curves) due to the difficulty of achieving high precision photometric calibration. We have developed an automated asteroid light curve extraction and calibration pipeline for images of moving objects from the 0.43 m Physics Innovations Robotic Telescope Explorer (PIRATE). This allows for the frequency and quality of observations required to construct asteroid phase curves. Optimisations in standard data reduction procedures are identified that may allow for similar small aperture facilities, constructed from commercially available/off-the-shelf components, to improve image and subsequent data quality. A demonstration of the hardware and software capabilities is expressed through observation statistics from a 10 month observing campaign, and through the photometric characterisation of near-Earth Asteroids 8014 (1990 MF) and 19764 (2000 NF5).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا