No Arabic abstract
Given the massive market of advertising and the sharply increasing online multimedia content (such as videos), it is now fashionable to promote advertisements (ads) together with the multimedia content. It is exhausted to find relevant ads to match the provided content manually, and hence, some automatic advertising techniques are developed. Since ads are usually hard to understand only according to its visual appearance due to the contained visual metaphor, some other modalities, such as the contained texts, should be exploited for understanding. To further improve user experience, it is necessary to understand both the topic and sentiment of the ads. This motivates us to develop a novel deep multimodal multitask framework to integrate multiple modalities to achieve effective topic and sentiment prediction simultaneously for ads understanding. In particular, our model first extracts multimodal information from ads and learn high-level and comparable representations. The visual metaphor of the ad is decoded in an unsupervised manner. The obtained representations are then fed into the proposed hierarchical multimodal attention modules to learn task-specific representations for final prediction. A multitask loss function is also designed to train both the topic and sentiment prediction models jointly in an end-to-end manner. We conduct extensive experiments on the latest and large advertisement dataset and achieve state-of-the-art performance for both prediction tasks. The obtained results could be utilized as a benchmark for ads understanding.
We propose UniT, a Unified Transformer model to simultaneously learn the most prominent tasks across different domains, ranging from object detection to natural language understanding and multimodal reasoning. Based on the transformer encoder-decoder architecture, our UniT model encodes each input modality with an encoder and makes predictions on each task with a shared decoder over the encoded input representations, followed by task-specific output heads. The entire model is jointly trained end-to-end with losses from each task. Compared to previous efforts on multi-task learning with transformers, we share the same model parameters across all tasks instead of separately fine-tuning task-specific models and handle a much higher variety of tasks across different domains. In our experiments, we learn 7 tasks jointly over 8 datasets, achieving strong performance on each task with significantly fewer parameters. Our code is available in MMF at https://mmf.sh.
We present a multi-task learning formulation for Deep Gaussian processes (DGPs), through non-linear mixtures of latent processes. The latent space is composed of private processes that capture within-task information and shared processes that capture across-task dependencies. We propose two different methods for segmenting the latent space: through hard coding shared and task-specific processes or through soft sharing with Automatic Relevance Determination kernels. We show that our formulation is able to improve the learning performance and transfer information between the tasks, outperforming other probabilistic multi-task learning models across real-world and benchmarking settings.
Both image-caption pairs and translation pairs provide the means to learn deep representations of and connections between languages. We use both types of pairs in MURAL (MUltimodal, MUltitask Representations Across Languages), a dual encoder that solves two tasks: 1) image-text matching and 2) translation pair matching. By incorporating billions of translation pairs, MURAL extends ALIGN (Jia et al. PMLR21)--a state-of-the-art dual encoder learned from 1.8 billion noisy image-text pairs. When using the same encoders, MURALs performance matches or exceeds ALIGNs cross-modal retrieval performance on well-resourced languages across several datasets. More importantly, it considerably improves performance on under-resourced languages, showing that text-text learning can overcome a paucity of image-caption examples for these languages. On the Wikipedia Image-Text dataset, for example, MURAL-base improves zero-shot mean recall by 8.1% on average for eight under-resourced languages and by 6.8% on average when fine-tuning. We additionally show that MURALs text representations cluster not only with respect to genealogical connections but also based on areal linguistics, such as the Balkan Sprachbund.
Deep learning models require extensive architecture design exploration and hyperparameter optimization to perform well on a given task. The exploration of the model design space is often made by a human expert, and optimized using a combination of grid search and search heuristics over a large space of possible choices. Neural Architecture Search (NAS) is a Reinforcement Learning approach that has been proposed to automate architecture design. NAS has been successfully applied to generate Neural Networks that rival the best human-designed architectures. However, NAS requires sampling, constructing, and training hundreds to thousands of models to achieve well-performing architectures. This procedure needs to be executed from scratch for each new task. The application of NAS to a wide set of tasks currently lacks a way to transfer generalizable knowledge across tasks. In this paper, we present the Multitask Neural Model Search (MNMS) controller. Our goal is to learn a generalizable framework that can condition model construction on successful model searches for previously seen tasks, thus significantly speeding up the search for new tasks. We demonstrate that MNMS can conduct an automated architecture search for multiple tasks simultaneously while still learning well-performing, specialized models for each task. We then show that pre-trained MNMS controllers can transfer learning to new tasks. By leveraging knowledge from previous searches, we find that pre-trained MNMS models start from a better location in the search space and reduce search time on unseen tasks, while still discovering models that outperform published human-designed models.
This paper describes an open-source Python framework for handling datasets for music processing tasks, built with the aim of improving the reproducibility of research projects in music computing and assessing the generalization abilities of machine learning models. The framework enables the automatic download and installation of several commonly used datasets for multimodal music processing. Specifically, we provide a Python API to access the datasets through Boolean set operations based on particular attributes, such as intersections and unions of composers, instruments, and so on. The framework is designed to ease the inclusion of new datasets and the respective ground-truth annotations so that one can build, convert, and extend ones own collection as well as distribute it by means of a compliant format to take advantage of the API. All code and ground-truth are released under suitable open licenses.