Do you want to publish a course? Click here

Topological models in rotationally symmetric quasicrystals

116   0   0.0 ( 0 )
 Added by Callum W Duncan Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the physics of quasicrystalline models in the presence of a uniform magnetic field, focusing on the presence and construction of topological states. This is done by using the Hofstadter model but with the sites and couplings denoted by the vertex model of the quasicrystal, giving the Hofstadter vertex model. We specifically consider two-dimensional quasicrystals made from tilings of two tiles with incommensurate areas, focusing on the five-fold Penrose and the eight-fold Ammann-Beenker tilings. This introduces two competing scales; the uniform magnetic field and the incommensurate scale of the cells of the tiling. Due to these competing scales the periodicity of the Hofstadter butterfly is destroyed. We observe the presence of topological edge states on the boundary of the system via the Bott index that exhibit two way transport along the edge. For the eight-fold tiling we also observe internal edge-like states with non-zero Bott index, which exhibit two way transport along this internal edge. The presence of these internal edge states is a new characteristic of quasicrystalline models in magnetic fields. We then move on to considering interacting systems. This is challenging, in part because exact diagonalization on a few tens of sites is not expected to be enough to accurately capture the physics of the quasicrystalline system, and in part because it is not clear how to construct topological flatbands having a large number of states. We show that these problems can be circumvented by building the models analytically, and in this way we construct models with Laughlin type fractional quantum Hall ground states.



rate research

Read More

Recent formal classifications of crystalline topological insulators predict that the combination of time-reversal and rotational symmetry gives rise to topological invariants beyond the ones known for other lattice symmetries. Although the classification proves their existence, it does not indicate a way of calculating the values of those invariants. Here, we show that a specific set of concentric Wilson loops and line invariants yields the values of all topological invariants in two-dimensional systems with pure rotation symmetry in class AII. Examples of this analysis are given for specific models with two-fold and three-fold rotational symmetry. We find new invariants that correspond to the presence of higher-order topology and corner charges.
Robust edge transport can occur when particles in crystalline lattices interact with an external magnetic field. This system is well described by Blochs theorem, with the spectrum being composed of bands of bulk states and in-gap edge states. When the confining lattice geometry is altered to be quasicrystaline, then Blochs theorem breaks down. However, we still expect to observe the basic characteristics of bulk states and current carrying edge states. Here, we show that for quasicrystals in magnetic fields, there is also a third option; the bulk localised transport states. These states share the in-gap nature of the well-known edge states and can support transport along them, but they are fully contained within the bulk of the system, with no support along the edge. We consider both finite and infinite systems, using rigorous error controlled computational techniques that are not prone to finite-size effects. The bulk localised transport states are preserved for infinite systems, in stark contrast to the normal edge states. This allows for transport to be observed in infinite systems, without any perturbations, defects, or boundaries being introduced. We confirm the in-gap topological nature of the bulk localised transport states for finite and infinite systems by computing common topological measures; namely the Bott index and local Chern marker. The bulk localised transport states form due to a magnetic aperiodicity arising from the interplay of length scales between the magnetic field and quasiperiodic lattice. Bulk localised transport could have interesting applications similar to those of the edge states on the boundary, but that could now take advantage of the larger bulk of the lattice. The infinite size techniques introduced here, especially the calculation of topological measures, could also be widely applied to other crystalline, quasicrystalline, and disordered models.
We propose a new form of inhomogeneous phases consisting of out-of-phase staggered flux domains separated by diagonal charged domain walls centered on bonds or on sites. Remarkably, such domain flux phases are spin-rotationally symmetric and exhibit cone-like quasiparticle dispersion as well as incommensurate order of orbital currents. Such features are consistent with the pseudogap behavior and the diagonal stripes observed experimentally in lightly doped cuprates. A renormalized mean field theory shows that such solutions are competitive candidates within the $t$--$J$ model.
With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D quasicrystals where the topological nature is attributed to the synthetic dimensions associated with the quasiperiodic order of quasicrystals. We further present the generalization of various types of crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topological invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally, since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation, we provide an overview of unique quasicrystalline symmetry-protected topological states without crystalline counterpart.
Synthetic fields applied to ultracold quantum gases can realize topological phases that transcend conventional Bose and Fermi-liquid paradigms. Raman laser beams in particular are under scrutiny as a route to create synthetic fields in neutral gases to mimic ordinary magnetic and electric fields acting on charged matter. Yet external laser beams can impose heating and losses that make cooling into many-body topological phases challenging. We propose that atomic or molecular dipoles placed in optical lattices can realize a topological phase without synthetic fields by placing them in certain frustrated lattices. We use numerical modeling on a specific example to show that the interactions between dipolar fermions placed in a kagome optical lattice spontaneously break time reversal symmetry to lead to a topological Mott insulator, a chiral topological phase generated entirely by interactions. We estimate realistic entropy and trapping parameters to argue that this intriguing phase of matter can be probed with quantum gases using a combination of recently implemented technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا