Do you want to publish a course? Click here

Chiral topological phases in optical lattices without synthetic fields

237   0   0.0 ( 0 )
 Added by Hoi-Yin Hui
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Synthetic fields applied to ultracold quantum gases can realize topological phases that transcend conventional Bose and Fermi-liquid paradigms. Raman laser beams in particular are under scrutiny as a route to create synthetic fields in neutral gases to mimic ordinary magnetic and electric fields acting on charged matter. Yet external laser beams can impose heating and losses that make cooling into many-body topological phases challenging. We propose that atomic or molecular dipoles placed in optical lattices can realize a topological phase without synthetic fields by placing them in certain frustrated lattices. We use numerical modeling on a specific example to show that the interactions between dipolar fermions placed in a kagome optical lattice spontaneously break time reversal symmetry to lead to a topological Mott insulator, a chiral topological phase generated entirely by interactions. We estimate realistic entropy and trapping parameters to argue that this intriguing phase of matter can be probed with quantum gases using a combination of recently implemented technologies.



rate research

Read More

120 - S. Ejima , H. Fehske , 2011
In order to identify possible experimental signatures of the superfluid to Mott-insulator quantum phase transition we calculate the charge structure factor $S(k,omega)$ for the one-dimensional Bose-Hubbard model using the dynamical density-matrix renormalisation group (DDMRG) technique. Particularly we analyse the behaviour of $S(k, omega)$ by varying---at zero temperature---the Coulomb interaction strength within the first Mott lobe. For strong interactions, in the Mott-insulator phase, we demonstrate that the DDMRG results are well reproduced by a strong-coupling expansion, just as the quasi-particle dispersion. In the superfluid phase we determine the linear excitation spectrum near $k=0$ and compare the DDMRG data with results from mean-field theory.
We investigate the effect of mass imbalance in binary Fermi mixtures loaded in optical lattices. Using dynamical mean-field theory, we study the transition from a fluid to a Mott insulator driven by the repulsive interactions. For almost every value of the parameters we find that the light species with smaller bare mass is more affected by correlations than the heavy one, so that their effective masses become closer than their bare masses before a Mott transition occurs. The strength of the critical repulsion decreases monotonically as the mass imbalance grows so that the minimum is realized when one of the species is localized. The evolution of the spectral functions testifies that a continuous loss of coherence and a destruction of the Fermi liquid occur as the imbalance grows. The two species display distinct properties and experimentally-observable deviations from the behavior of a balanced Fermi mixture.
131 - Zhenxiang Gao , Zhihao Lan 2020
We introduce a non-Abelian kagome lattice model that has both time-reversal and inversion symmetries and study the flat band physics and topological phases of this model. Due to the coexistence of both time-reversal and inversion symmetries, the energy bands consist of three doubly degenerate bands whose energy and conditions for the presence of flat bands could be obtained analytically, allowing us to tune the flat band with respect to the other two dispersive bands from the top to the middle and then to the bottom of the three bands. We further study the gapped phases of the model and show that they belong to the same phase as the band gaps only close at discrete points of the parameter space, making any two gapped phases adiabatically connected to each other without closing the band gap. Using the Pfaffian approach based on the time-reversal symmetry and parity characterization from the inversion symmetry, we calculate the bulk topological invariants and demonstrate that the unique gapped phases belong to the $Z_2$ quantum spin Hall phase, which is further confirmed by the edge state calculations.
206 - G. Sun , G. Jackeli , L. Santos 2011
Ultra-cold dipolar spinor fermions in zig-zag type optical lattices can mimic spin-orbital models relevant in solid-state systems, as transition-metal oxides with partially filled d-levels, with the interesting advantage of reviving the quantum nature of orbital fluctuations. We discuss two different physical systems in which these models may be simulated, showing that the interplay between lattice geometry and spin-orbital quantum dynamics produces a wealth of novel quantum phases.
We investigate the influence of a Markovian environment on the dynamics of interacting spinful fermionic atoms in a lattice. In order to explore the physical phenomena occurring at short times, we develop a method based on a slave-spin representation of fermions which is amenable to the investigation of the dynamics of dissipative systems. We apply this approach to two different dissipative couplings which can occur in current experiments: a coupling via the local density and a coupling via the local double occupancy. We complement our study based on this novel method with results obtained using the adiabatic elimination technique and with an exact study of a two-site model. We uncover that the decoherence is slowed down by increasing either the interaction strength or the dissipative coupling (the Zeno effect). We also find, for the coupling to the local double occupancy, that the final steady state can sustain single-particle coherence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا