No Arabic abstract
An effective Lagrangian approach, partly inspired by Quantum Loop Cosmology (QLC), is presented and formulated in a non flat FLRW space-times, making use of modified gravitational models. The models considered are non generic, and their choice is dictated by the necessity to have at least second order differential equations of motion in a non flat FLRW space-time. This is accomplished by a class of Lagrangian which are not analytic in the curvature invariants, or making use of a mimetic gravitational scalar field. It is shown that, for some effective models, the associated generalized Friedmann equation, in general, may admit non singular metrics as solutions, while the de Sitter space-time is present only for a restricted class, which includes General Relativity and Lovelock gravity. The other models admit pseudo de Sitter solutions, namely FLRW metrics, such that for vanishing spatial curvature looks like flat de Sitter patch, but for non vanishing spatial curvature are regular bounce metrics or, when the spatial curvature is negative, Big-Bang singular metrics.
Usually when applying the mimetic model to the early universe, higher derivative terms are needed to promote the mimetic field to be dynamical. However such models suffer from the ghost and/or the gradient instabilities and simple extensions cannot cure this pathology. We point out in this paper that it is possible to overcome this difficulty by considering the direct couplings of the higher derivatives of the mimetic field to the curvature of the spacetime.
Hawking radiation remains a crucial theoretical prediction of semi-classical gravity and is considered one of the critical tests for a model of quantum gravity. However, Hawkings original derivation used quantum field theory on a fixed background. Efforts have been made to include the spacetime fluctuations arising from the quantization of the dynamical degrees of freedom of gravity itself and study the effects on the Hawking particles. Using semi-classical analysis, we study the effects of quantum fluctuations of scalar field stress-tensors in asymptotic non-flat spherically symmetric black-hole space-times. Using two different approaches, we obtain a critical length-scale from the horizon at which gravitational interactions become large, i.e., when the back reaction to the metric due to the scalar field becomes significant. For 4-D Schwarzschild AdS (SAdS) and Schwarzschild de Sitter (SdS), the number of relevant modes for the back-reaction is finite only for a specific range of values of M/L (where M is the mass of the black-hole, and L is related to the modulus of the cosmological constant). For SAdS (SdS), the number of relevant modes is infinite for M/L $sim$ 1 (0.2 < M/L < $frac{1}{3sqrt{3}}$). We discuss the implications of these results for the late stages of black-hole evaporation.
The aim of this work is to describe the complete family of non-expanding Plebanski-Demianski type D space-times and to present their possible interpretation. We explicitly express the most general form of such (electro)vacuum solutions with any cosmological constant, and we investigate the geometrical and physical meaning of the seven parameters they contain. We present various metric forms, and by analyzing the corresponding coordinates in the weak-field limit we elucidate the global structure of these space-times, such as the character of possible singularities. We also demonstrate that members of this family can be understood as generalizations of classic B-metrics. In particular, the BI-metric represents an external gravitational field of a tachyonic (superluminal) source, complementary to the AI-metric which is the well-known Schwarzschild solution for exact gravitational field of a static (standing) source.
We derive the general formulae for the the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL.
Two types of mimetic gravity models with higher derivatives of the mimetic field are analyzed in the Hamiltonian formalism. For the first type of mimetic gravity, the Ricci scalar only couples to the mimetic field and we demonstrate the number of degrees of freedom (DOFs) is three. Then in both Einstein frame and Jordan frame, we perform the Hamiltonian analysis for the extended mimetic gravity with higher derivatives directly coupled to the Ricci scalar. We show that different from previous studies working at the cosmological perturbation level, where only three propagating DOFs show up, this generalized mimetic model, in general, has four DOFs. To understand this discrepancy, we consider the unitary gauge and find out that the number of DOFs reduces to three. We conclude that the reason why this system looks peculiar is that the Dirac matrix of all secondary constraints becomes singular in the unitary gauge, resulting in extra secondary constraints and thus reducing the number of DOFs. Furthermore, we give a simple example of a dynamic system to illustrate how gauge choice can affect the number of secondary constraints as well as the DOFs when the rank of the Dirac matrix is gauge dependent.